应用多模态数据融合技术跟踪自闭症青少年在虚拟现实训练中表象灵活性的发展情况

Jewoong Moon , Fengfeng Ke , Zlatko Sokolikj , Shayok Chakraborty
{"title":"应用多模态数据融合技术跟踪自闭症青少年在虚拟现实训练中表象灵活性的发展情况","authors":"Jewoong Moon ,&nbsp;Fengfeng Ke ,&nbsp;Zlatko Sokolikj ,&nbsp;Shayok Chakraborty","doi":"10.1016/j.cexr.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><p>In our study, we harnessed multimodal data to develop a predictive model aimed at assessing the development of representational flexibility (RF) in autistic adolescents engaged in virtual reality (VR)-based cognitive skills training. Recognizing VR's potential to enhance RF through immersive 3D simulation tasks, we addressed the research gap in analyzing learners' digital interactions within this environment. This data mining study integrated diverse data sources—including behavioral cues, physiological responses, and direct interaction logs—collected from 178 training sessions with eight autistic adolescents. This comprehensive dataset, encompassing both audio and screen recordings, was analyzed using advanced machine learning techniques. Through decision-level data fusion, particularly employing the random forest algorithm, our model demonstrated enhanced accuracy in predicting RF development, surpassing single-source data approaches. This research not only contributes to the effective use of VR in educational interventions for autistic adolescents but also showcases the potential of multimodal data fusion in understanding complex cognitive skills development.</p></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"4 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949678024000138/pdfft?md5=9a2a2de9af237050b12092759a3b0423&pid=1-s2.0-S2949678024000138-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Applying multimodal data fusion to track autistic adolescents’ representational flexibility development during virtual reality-based training\",\"authors\":\"Jewoong Moon ,&nbsp;Fengfeng Ke ,&nbsp;Zlatko Sokolikj ,&nbsp;Shayok Chakraborty\",\"doi\":\"10.1016/j.cexr.2024.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our study, we harnessed multimodal data to develop a predictive model aimed at assessing the development of representational flexibility (RF) in autistic adolescents engaged in virtual reality (VR)-based cognitive skills training. Recognizing VR's potential to enhance RF through immersive 3D simulation tasks, we addressed the research gap in analyzing learners' digital interactions within this environment. This data mining study integrated diverse data sources—including behavioral cues, physiological responses, and direct interaction logs—collected from 178 training sessions with eight autistic adolescents. This comprehensive dataset, encompassing both audio and screen recordings, was analyzed using advanced machine learning techniques. Through decision-level data fusion, particularly employing the random forest algorithm, our model demonstrated enhanced accuracy in predicting RF development, surpassing single-source data approaches. This research not only contributes to the effective use of VR in educational interventions for autistic adolescents but also showcases the potential of multimodal data fusion in understanding complex cognitive skills development.</p></div>\",\"PeriodicalId\":100320,\"journal\":{\"name\":\"Computers & Education: X Reality\",\"volume\":\"4 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949678024000138/pdfft?md5=9a2a2de9af237050b12092759a3b0423&pid=1-s2.0-S2949678024000138-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Education: X Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949678024000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Education: X Reality","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949678024000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的研究中,我们利用多模态数据开发了一个预测模型,旨在评估参与基于虚拟现实(VR)的认知技能培训的自闭症青少年的表象灵活性(RF)发展情况。我们认识到 VR 有可能通过身临其境的三维模拟任务来提高表征灵活性,因此我们填补了在分析学习者在此环境中的数字互动方面的研究空白。这项数据挖掘研究整合了各种数据源--包括行为线索、生理反应和直接交互日志--这些数据是从八名自闭症青少年的 178 次培训课程中收集的。该综合数据集包括音频和屏幕记录,采用先进的机器学习技术进行分析。通过决策级数据融合,特别是采用随机森林算法,我们的模型在预测射频发展方面表现出更高的准确性,超过了单一来源数据方法。这项研究不仅有助于在自闭症青少年的教育干预中有效利用虚拟现实技术,还展示了多模态数据融合在理解复杂认知技能发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying multimodal data fusion to track autistic adolescents’ representational flexibility development during virtual reality-based training

In our study, we harnessed multimodal data to develop a predictive model aimed at assessing the development of representational flexibility (RF) in autistic adolescents engaged in virtual reality (VR)-based cognitive skills training. Recognizing VR's potential to enhance RF through immersive 3D simulation tasks, we addressed the research gap in analyzing learners' digital interactions within this environment. This data mining study integrated diverse data sources—including behavioral cues, physiological responses, and direct interaction logs—collected from 178 training sessions with eight autistic adolescents. This comprehensive dataset, encompassing both audio and screen recordings, was analyzed using advanced machine learning techniques. Through decision-level data fusion, particularly employing the random forest algorithm, our model demonstrated enhanced accuracy in predicting RF development, surpassing single-source data approaches. This research not only contributes to the effective use of VR in educational interventions for autistic adolescents but also showcases the potential of multimodal data fusion in understanding complex cognitive skills development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced education on geology by 3D interactive virtual geological scenes Using virtual reality mediation in a workplace setting for employees with disabilities: A pilot study Building ethical virtual classrooms: Confucian perspectives on avatars and VR Perception of head shape, texture fidelity and head orientation of the instructor’s look-alike avatar Using cospaces in augmented reality digital story creation: A thematic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1