{"title":"用于肌肉收缩监测的可穿戴柔性射频滤波系统","authors":"Zaynab Attoun;Nader Shafi;Youssef Tawk;Joseph Costantine;Elie Shammas","doi":"10.1109/JMW.2023.3347260","DOIUrl":null,"url":null,"abstract":"This paper introduces a dual band-pass and dual band-stop filter that is designed along its flexible back-end circuitry to sense and monitor muscle contractions. The filter and its back-end circuit are proposed to be wearable, flexible, and stretchable. The presented design is composed of several logarithmically scaled spiral-shaped defected ground structures (DGS) located along the ground plane of a co-planar waveguide transmission line. In addition, U-shaped slots are integrated within the transmission line to maintain the sensing operation of the filter when its structure is stretched. The entire structure is fabricated on a multi-part flexible Polyethylene Terephthalate (PET) substrate and its stretchable configuration is enabled through the integration of a Room-Temperature-Vulcanizing (RTV) silicon substrate. Such stretchable ability is obtained through the movement of the multiple parts that compose the filter and is exhibited by the tuning of its band-pass and band-stop frequencies of operation between 1 GHz and 4 GHz. Correspondingly, the stretchable ability of the filter is also indicated by the change in magnitudes of its reflection and transmission coefficients. As a result, for the band-pass operation, the insertion loss of the flexible wearable filter, placed above the human arm, at the first frequency (1.39 GHz) is −1.95 dB with a tuning range of 590 MHz, and at the second frequency (2.68 GHz) −1.94 dB with a tuning range of 330 MHz. The change in the response of the presented system is proportional to the intensity of the muscle contraction. To capture this change, a custom-designed integrated flexible back-end circuit interrogates the sensor, collects the magnitudes of the reflection and transmission coefficients, and outputs corresponding voltages. As a result, monitoring the output voltage of the back-end circuit indicates the muscle contraction level, which is sensed from the stretching movement of the filter's structure. The back-end circuit and the sensor are fabricated and tested over multiple measurement cycles where the ability of the sensor to track muscle contraction is demonstrated.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"4 2","pages":"193-203"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10406186","citationCount":"0","resultStr":"{\"title\":\"Wearable Flexible Radio Frequency Filtering System for Muscle Contraction Monitoring\",\"authors\":\"Zaynab Attoun;Nader Shafi;Youssef Tawk;Joseph Costantine;Elie Shammas\",\"doi\":\"10.1109/JMW.2023.3347260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a dual band-pass and dual band-stop filter that is designed along its flexible back-end circuitry to sense and monitor muscle contractions. The filter and its back-end circuit are proposed to be wearable, flexible, and stretchable. The presented design is composed of several logarithmically scaled spiral-shaped defected ground structures (DGS) located along the ground plane of a co-planar waveguide transmission line. In addition, U-shaped slots are integrated within the transmission line to maintain the sensing operation of the filter when its structure is stretched. The entire structure is fabricated on a multi-part flexible Polyethylene Terephthalate (PET) substrate and its stretchable configuration is enabled through the integration of a Room-Temperature-Vulcanizing (RTV) silicon substrate. Such stretchable ability is obtained through the movement of the multiple parts that compose the filter and is exhibited by the tuning of its band-pass and band-stop frequencies of operation between 1 GHz and 4 GHz. Correspondingly, the stretchable ability of the filter is also indicated by the change in magnitudes of its reflection and transmission coefficients. As a result, for the band-pass operation, the insertion loss of the flexible wearable filter, placed above the human arm, at the first frequency (1.39 GHz) is −1.95 dB with a tuning range of 590 MHz, and at the second frequency (2.68 GHz) −1.94 dB with a tuning range of 330 MHz. The change in the response of the presented system is proportional to the intensity of the muscle contraction. To capture this change, a custom-designed integrated flexible back-end circuit interrogates the sensor, collects the magnitudes of the reflection and transmission coefficients, and outputs corresponding voltages. As a result, monitoring the output voltage of the back-end circuit indicates the muscle contraction level, which is sensed from the stretching movement of the filter's structure. The back-end circuit and the sensor are fabricated and tested over multiple measurement cycles where the ability of the sensor to track muscle contraction is demonstrated.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"4 2\",\"pages\":\"193-203\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10406186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10406186/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10406186/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Wearable Flexible Radio Frequency Filtering System for Muscle Contraction Monitoring
This paper introduces a dual band-pass and dual band-stop filter that is designed along its flexible back-end circuitry to sense and monitor muscle contractions. The filter and its back-end circuit are proposed to be wearable, flexible, and stretchable. The presented design is composed of several logarithmically scaled spiral-shaped defected ground structures (DGS) located along the ground plane of a co-planar waveguide transmission line. In addition, U-shaped slots are integrated within the transmission line to maintain the sensing operation of the filter when its structure is stretched. The entire structure is fabricated on a multi-part flexible Polyethylene Terephthalate (PET) substrate and its stretchable configuration is enabled through the integration of a Room-Temperature-Vulcanizing (RTV) silicon substrate. Such stretchable ability is obtained through the movement of the multiple parts that compose the filter and is exhibited by the tuning of its band-pass and band-stop frequencies of operation between 1 GHz and 4 GHz. Correspondingly, the stretchable ability of the filter is also indicated by the change in magnitudes of its reflection and transmission coefficients. As a result, for the band-pass operation, the insertion loss of the flexible wearable filter, placed above the human arm, at the first frequency (1.39 GHz) is −1.95 dB with a tuning range of 590 MHz, and at the second frequency (2.68 GHz) −1.94 dB with a tuning range of 330 MHz. The change in the response of the presented system is proportional to the intensity of the muscle contraction. To capture this change, a custom-designed integrated flexible back-end circuit interrogates the sensor, collects the magnitudes of the reflection and transmission coefficients, and outputs corresponding voltages. As a result, monitoring the output voltage of the back-end circuit indicates the muscle contraction level, which is sensed from the stretching movement of the filter's structure. The back-end circuit and the sensor are fabricated and tested over multiple measurement cycles where the ability of the sensor to track muscle contraction is demonstrated.