Taeyeon Hong , Junho Park , Hahyun Park , Garam An , Hojun Lee , Gwonhwa Song , Whasun Lim
{"title":"暴露于阿西氟芬会诱发斑马鱼生命早期阶段的发育毒性","authors":"Taeyeon Hong , Junho Park , Hahyun Park , Garam An , Hojun Lee , Gwonhwa Song , Whasun Lim","doi":"10.1016/j.cbpc.2024.109909","DOIUrl":null,"url":null,"abstract":"<div><p>Acifluorfen, a selective herbicide from the diphenyl ether family, targets broad leaf weeds. Diphenyl ether inhibits chlorophyll production in green plants by inhibiting protoporphyrinogen oxidase (PPO), causing cellular damage. Despite its known impacts on plants, the influence of acifluorfen on zebrafish embryo development remains unclear. In this study, we explored the LC<sub>50</sub> of acifluorfen in early-stage wild-type zebrafish, determining it to be 54.99 mg/L. Subsequent examinations revealed morphological changes in zebrafish, including reduced body length. Using the <em>cmlc2:dsRED</em> transgenic model, we observed heart dysfunction in acifluorfen-exposed zebrafish, marked by an enlarged heart area, edema, and decreased heart rate. In response to dose-dependent acifluorfen exposure, the inhibition of angiogenesis in the brain was observed in transgenic zebrafish models (<em>fli1a:eGFP</em>). Organ malformations, specifically in the liver and pancreas, were noted, in <em>lfabp:dsRED;elastase:eGFP</em> transgenic models, indicating reduced organ size in acifluorfen-exposed zebrafish. Furthermore, acifluorfen heightened the expression of apoptosis-related genes (<em>casp8</em>, <em>casp9</em>, and <em>tp53</em>) in zebrafish embryos. We then determined whether acifluorfen affected the viability of zebrafish liver (ZFL) cells based on its effects on liver development <em>in vivo</em>. The results indicated that the proliferation of ZFL cells decreased significantly in a dose-dependent manner. Additionally, acifluorfen-treated ZFL cells exhibited a slight increase in apoptotic cells stained with annexin V and propidium iodide. In summary, these findings establish a baseline concentration for acifluorfen's effects on aquatic ecosystems and non-target organisms.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to acifluorfen induces developmental toxicity in the early life stage of zebrafish\",\"authors\":\"Taeyeon Hong , Junho Park , Hahyun Park , Garam An , Hojun Lee , Gwonhwa Song , Whasun Lim\",\"doi\":\"10.1016/j.cbpc.2024.109909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acifluorfen, a selective herbicide from the diphenyl ether family, targets broad leaf weeds. Diphenyl ether inhibits chlorophyll production in green plants by inhibiting protoporphyrinogen oxidase (PPO), causing cellular damage. Despite its known impacts on plants, the influence of acifluorfen on zebrafish embryo development remains unclear. In this study, we explored the LC<sub>50</sub> of acifluorfen in early-stage wild-type zebrafish, determining it to be 54.99 mg/L. Subsequent examinations revealed morphological changes in zebrafish, including reduced body length. Using the <em>cmlc2:dsRED</em> transgenic model, we observed heart dysfunction in acifluorfen-exposed zebrafish, marked by an enlarged heart area, edema, and decreased heart rate. In response to dose-dependent acifluorfen exposure, the inhibition of angiogenesis in the brain was observed in transgenic zebrafish models (<em>fli1a:eGFP</em>). Organ malformations, specifically in the liver and pancreas, were noted, in <em>lfabp:dsRED;elastase:eGFP</em> transgenic models, indicating reduced organ size in acifluorfen-exposed zebrafish. Furthermore, acifluorfen heightened the expression of apoptosis-related genes (<em>casp8</em>, <em>casp9</em>, and <em>tp53</em>) in zebrafish embryos. We then determined whether acifluorfen affected the viability of zebrafish liver (ZFL) cells based on its effects on liver development <em>in vivo</em>. The results indicated that the proliferation of ZFL cells decreased significantly in a dose-dependent manner. Additionally, acifluorfen-treated ZFL cells exhibited a slight increase in apoptotic cells stained with annexin V and propidium iodide. In summary, these findings establish a baseline concentration for acifluorfen's effects on aquatic ecosystems and non-target organisms.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624000772\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624000772","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exposure to acifluorfen induces developmental toxicity in the early life stage of zebrafish
Acifluorfen, a selective herbicide from the diphenyl ether family, targets broad leaf weeds. Diphenyl ether inhibits chlorophyll production in green plants by inhibiting protoporphyrinogen oxidase (PPO), causing cellular damage. Despite its known impacts on plants, the influence of acifluorfen on zebrafish embryo development remains unclear. In this study, we explored the LC50 of acifluorfen in early-stage wild-type zebrafish, determining it to be 54.99 mg/L. Subsequent examinations revealed morphological changes in zebrafish, including reduced body length. Using the cmlc2:dsRED transgenic model, we observed heart dysfunction in acifluorfen-exposed zebrafish, marked by an enlarged heart area, edema, and decreased heart rate. In response to dose-dependent acifluorfen exposure, the inhibition of angiogenesis in the brain was observed in transgenic zebrafish models (fli1a:eGFP). Organ malformations, specifically in the liver and pancreas, were noted, in lfabp:dsRED;elastase:eGFP transgenic models, indicating reduced organ size in acifluorfen-exposed zebrafish. Furthermore, acifluorfen heightened the expression of apoptosis-related genes (casp8, casp9, and tp53) in zebrafish embryos. We then determined whether acifluorfen affected the viability of zebrafish liver (ZFL) cells based on its effects on liver development in vivo. The results indicated that the proliferation of ZFL cells decreased significantly in a dose-dependent manner. Additionally, acifluorfen-treated ZFL cells exhibited a slight increase in apoptotic cells stained with annexin V and propidium iodide. In summary, these findings establish a baseline concentration for acifluorfen's effects on aquatic ecosystems and non-target organisms.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.