{"title":"利用从鳄梨植物中提取的活性炭的吸附作用去除石油精炼废水中的 COD","authors":"Zainab Y. Atiyah, Shatha K. Muallah, Ali H. Abbar","doi":"10.1016/j.sajce.2024.03.015","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, removing of COD from wastewater generated via Al-Diwanya petroleum refinery plant located in Iraq by adsorption with activated carbon (AC) derived from avocado seeds was successfully performed via a two-step approach. In the first step, AC was prepared from avocado seeds via impregnating with H<sub>3</sub>PO<sub>4</sub> at 400 °C where effects of H<sub>3</sub>PO<sub>4</sub> concentration and calcination time on the specific surface area of AC were studied. Additionally, properties of the prepared AC were examined by XRD, SEM, and FTIR to knowledge the features of the internal structure of AC. Results showed that the prepared AC has mesopores structure with pore diameters in the range between 30.07 and 50.8 µm. Increasing the weight percent of H<sub>3</sub>PO<sub>4</sub> led to an increase in the specific surface area of AC to reach a maximum value beyond which a decrease in the specific surface area was happened with further increasing in H<sub>3</sub>PO<sub>4</sub> percent. Increasing the time resulted in an increase in the AC specific surface area to reach a maximum value beyond which a decrease in specific surface area was happened. The best value of AC specific surface area was 436.6 m<sup>2</sup>/g which obtained at 70 %H<sub>3</sub>PO<sub>4</sub> and 4 h. At the second step, the performance of the prepared AC in removing of COD by adsorption process was evaluated via studying the effects of three operating parameters, namely adsorbent dosage (1–5 g/L), pH (3–9), and shaking speed (100–400 rpm) on the removal of COD(RE%) using a response surface methodology (RSM). Increasing AC dosage led to an increase in RE% while increasing each of pH and shaking speed resulted in lowering RE%. The optimum conditions for higher RE% were AC dosage of 5 g/L, pH of 3, and shaking speed of 100 rpm in which a removal efficiency of 94.54 % was obtained. The degradation of COD with time was found to obey a second order kinetic confirming the chemisorption is the rate limiting step in the adsorption process.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"48 ","pages":"Pages 467-483"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S102691852400043X/pdfft?md5=489f935376d143ea58bb6bfcbad74ceb&pid=1-s2.0-S102691852400043X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Removal of COD from petroleum refinery wastewater by adsorption using activated carbon derived from avocado plant\",\"authors\":\"Zainab Y. Atiyah, Shatha K. Muallah, Ali H. Abbar\",\"doi\":\"10.1016/j.sajce.2024.03.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, removing of COD from wastewater generated via Al-Diwanya petroleum refinery plant located in Iraq by adsorption with activated carbon (AC) derived from avocado seeds was successfully performed via a two-step approach. In the first step, AC was prepared from avocado seeds via impregnating with H<sub>3</sub>PO<sub>4</sub> at 400 °C where effects of H<sub>3</sub>PO<sub>4</sub> concentration and calcination time on the specific surface area of AC were studied. Additionally, properties of the prepared AC were examined by XRD, SEM, and FTIR to knowledge the features of the internal structure of AC. Results showed that the prepared AC has mesopores structure with pore diameters in the range between 30.07 and 50.8 µm. Increasing the weight percent of H<sub>3</sub>PO<sub>4</sub> led to an increase in the specific surface area of AC to reach a maximum value beyond which a decrease in the specific surface area was happened with further increasing in H<sub>3</sub>PO<sub>4</sub> percent. Increasing the time resulted in an increase in the AC specific surface area to reach a maximum value beyond which a decrease in specific surface area was happened. The best value of AC specific surface area was 436.6 m<sup>2</sup>/g which obtained at 70 %H<sub>3</sub>PO<sub>4</sub> and 4 h. At the second step, the performance of the prepared AC in removing of COD by adsorption process was evaluated via studying the effects of three operating parameters, namely adsorbent dosage (1–5 g/L), pH (3–9), and shaking speed (100–400 rpm) on the removal of COD(RE%) using a response surface methodology (RSM). Increasing AC dosage led to an increase in RE% while increasing each of pH and shaking speed resulted in lowering RE%. The optimum conditions for higher RE% were AC dosage of 5 g/L, pH of 3, and shaking speed of 100 rpm in which a removal efficiency of 94.54 % was obtained. The degradation of COD with time was found to obey a second order kinetic confirming the chemisorption is the rate limiting step in the adsorption process.</p></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Pages 467-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S102691852400043X/pdfft?md5=489f935376d143ea58bb6bfcbad74ceb&pid=1-s2.0-S102691852400043X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S102691852400043X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S102691852400043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Removal of COD from petroleum refinery wastewater by adsorption using activated carbon derived from avocado plant
In the present work, removing of COD from wastewater generated via Al-Diwanya petroleum refinery plant located in Iraq by adsorption with activated carbon (AC) derived from avocado seeds was successfully performed via a two-step approach. In the first step, AC was prepared from avocado seeds via impregnating with H3PO4 at 400 °C where effects of H3PO4 concentration and calcination time on the specific surface area of AC were studied. Additionally, properties of the prepared AC were examined by XRD, SEM, and FTIR to knowledge the features of the internal structure of AC. Results showed that the prepared AC has mesopores structure with pore diameters in the range between 30.07 and 50.8 µm. Increasing the weight percent of H3PO4 led to an increase in the specific surface area of AC to reach a maximum value beyond which a decrease in the specific surface area was happened with further increasing in H3PO4 percent. Increasing the time resulted in an increase in the AC specific surface area to reach a maximum value beyond which a decrease in specific surface area was happened. The best value of AC specific surface area was 436.6 m2/g which obtained at 70 %H3PO4 and 4 h. At the second step, the performance of the prepared AC in removing of COD by adsorption process was evaluated via studying the effects of three operating parameters, namely adsorbent dosage (1–5 g/L), pH (3–9), and shaking speed (100–400 rpm) on the removal of COD(RE%) using a response surface methodology (RSM). Increasing AC dosage led to an increase in RE% while increasing each of pH and shaking speed resulted in lowering RE%. The optimum conditions for higher RE% were AC dosage of 5 g/L, pH of 3, and shaking speed of 100 rpm in which a removal efficiency of 94.54 % was obtained. The degradation of COD with time was found to obey a second order kinetic confirming the chemisorption is the rate limiting step in the adsorption process.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.