藜麦脱水蛋白基因家族的全基因组鉴定和盐胁迫表达分析

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2024-04-01 DOI:10.1016/j.cpb.2024.100340
Alejandra E. Melgar , Axel J. Rizzo , Laura Moyano , Rocío Cenizo , María B. Palacios , Alicia M. Zelada
{"title":"藜麦脱水蛋白基因家族的全基因组鉴定和盐胁迫表达分析","authors":"Alejandra E. Melgar ,&nbsp;Axel J. Rizzo ,&nbsp;Laura Moyano ,&nbsp;Rocío Cenizo ,&nbsp;María B. Palacios ,&nbsp;Alicia M. Zelada","doi":"10.1016/j.cpb.2024.100340","DOIUrl":null,"url":null,"abstract":"<div><p>Dehydrins (DHNs) are essential proteins in the embryonic development and abiotic stress responses of plants. Due to their remarkable ability to confer tolerance to plants in conditions of drought, salinity and extreme temperatures, DHNs have garnered considerable interest. Quinoa (<em>Chenopodium quinoa</em> Willd.), a facultative halophyte plant, can thrive in a wide range of agroecosystems, making it a promising candidate for stress tolerance studies. In this study, we identified eleven DHN genes in the quinoa genome belonging to Y-, F- and H-orthologous groups found in angiosperms. Notably, the H-DHNs lack the K-segment, a feature observed in all Amaranthaceae species, but not in other angiosperms. We identified four DHN structural subgroups: FSKn, YnSKn, SKn-DHNs and the atypical HS-DHN. Phylogenetic analysis indicated that each structural subgroup, except for SK2-DHN, presents two paralogous genes, in accordance with the allotetraploid character of <em>C. quinoa</em>. Quantitative real-time PCR expression analysis revealed that DHN1s (FSK2) and DHN3s (Y2SK2) were expressed in all tissues, while DHN2s (FSK3) were predominant in roots and DHN4s (Y4SK2 and SK2) were predominant in flowers. Salt-response gene expression analysis in seedlings showed that CqDHN4s increase their expression in response to salt stress in all varieties studied, while CqDHN1s reduce their expression in a more salt stress-tolerant variety, suggesting a possible adaptive advantage. <em>In silico</em> analysis of the promoters of CqDHN1s and CqDHN4s supports the involvement of these DHNs in responding to abiotic stress.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000227/pdfft?md5=726d86edc3215f75f456dffee1bd795e&pid=1-s2.0-S2214662824000227-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and salt stress-expression analysis of the dehydrin gene family in Chenopodium quinoa\",\"authors\":\"Alejandra E. Melgar ,&nbsp;Axel J. Rizzo ,&nbsp;Laura Moyano ,&nbsp;Rocío Cenizo ,&nbsp;María B. Palacios ,&nbsp;Alicia M. Zelada\",\"doi\":\"10.1016/j.cpb.2024.100340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dehydrins (DHNs) are essential proteins in the embryonic development and abiotic stress responses of plants. Due to their remarkable ability to confer tolerance to plants in conditions of drought, salinity and extreme temperatures, DHNs have garnered considerable interest. Quinoa (<em>Chenopodium quinoa</em> Willd.), a facultative halophyte plant, can thrive in a wide range of agroecosystems, making it a promising candidate for stress tolerance studies. In this study, we identified eleven DHN genes in the quinoa genome belonging to Y-, F- and H-orthologous groups found in angiosperms. Notably, the H-DHNs lack the K-segment, a feature observed in all Amaranthaceae species, but not in other angiosperms. We identified four DHN structural subgroups: FSKn, YnSKn, SKn-DHNs and the atypical HS-DHN. Phylogenetic analysis indicated that each structural subgroup, except for SK2-DHN, presents two paralogous genes, in accordance with the allotetraploid character of <em>C. quinoa</em>. Quantitative real-time PCR expression analysis revealed that DHN1s (FSK2) and DHN3s (Y2SK2) were expressed in all tissues, while DHN2s (FSK3) were predominant in roots and DHN4s (Y4SK2 and SK2) were predominant in flowers. Salt-response gene expression analysis in seedlings showed that CqDHN4s increase their expression in response to salt stress in all varieties studied, while CqDHN1s reduce their expression in a more salt stress-tolerant variety, suggesting a possible adaptive advantage. <em>In silico</em> analysis of the promoters of CqDHN1s and CqDHN4s supports the involvement of these DHNs in responding to abiotic stress.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000227/pdfft?md5=726d86edc3215f75f456dffee1bd795e&pid=1-s2.0-S2214662824000227-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脱水素(DHNs)是植物胚胎发育和非生物胁迫反应中不可或缺的蛋白质。由于 DHNs 能够赋予植物在干旱、盐碱和极端温度条件下的耐受性,因此引起了人们的极大兴趣。藜麦(Chenopodium quinoa Willd.)在这项研究中,我们在藜麦基因组中发现了 11 个 DHN 基因,分别属于被子植物中的 Y-、F- 和 H-同源组。值得注意的是,H-DHNs 缺乏 K 段,这是在所有苋科物种中观察到的一个特征,但在其他被子植物中却没有发现。我们确定了四个 DHN 结构亚群:FSKn、YnSKn、SKn-DHNs 和非典型 HS-DHN。系统发育分析表明,除 SK2-DHN 外,每个结构亚群都有两个同源基因,这与藜麦的异源四倍体特征相符。实时定量 PCR 表达分析表明,DHN1s(FSK2)和 DHN3s(Y2SK2)在所有组织中均有表达,而 DHN2s(FSK3)主要在根部表达,DHN4s(Y4SK2 和 SK2)主要在花部表达。幼苗中的盐反应基因表达分析表明,在所有研究品种中,CqDHN4s 在盐胁迫下的表达量都有所增加,而在一个更耐盐碱的品种中,CqDHN1s 的表达量则有所减少,这表明它们可能具有适应优势。对 CqDHN1s 和 CqDHN4s 启动子的硅分析支持这些 DHNs 参与对非生物胁迫的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide identification and salt stress-expression analysis of the dehydrin gene family in Chenopodium quinoa

Dehydrins (DHNs) are essential proteins in the embryonic development and abiotic stress responses of plants. Due to their remarkable ability to confer tolerance to plants in conditions of drought, salinity and extreme temperatures, DHNs have garnered considerable interest. Quinoa (Chenopodium quinoa Willd.), a facultative halophyte plant, can thrive in a wide range of agroecosystems, making it a promising candidate for stress tolerance studies. In this study, we identified eleven DHN genes in the quinoa genome belonging to Y-, F- and H-orthologous groups found in angiosperms. Notably, the H-DHNs lack the K-segment, a feature observed in all Amaranthaceae species, but not in other angiosperms. We identified four DHN structural subgroups: FSKn, YnSKn, SKn-DHNs and the atypical HS-DHN. Phylogenetic analysis indicated that each structural subgroup, except for SK2-DHN, presents two paralogous genes, in accordance with the allotetraploid character of C. quinoa. Quantitative real-time PCR expression analysis revealed that DHN1s (FSK2) and DHN3s (Y2SK2) were expressed in all tissues, while DHN2s (FSK3) were predominant in roots and DHN4s (Y4SK2 and SK2) were predominant in flowers. Salt-response gene expression analysis in seedlings showed that CqDHN4s increase their expression in response to salt stress in all varieties studied, while CqDHN1s reduce their expression in a more salt stress-tolerant variety, suggesting a possible adaptive advantage. In silico analysis of the promoters of CqDHN1s and CqDHN4s supports the involvement of these DHNs in responding to abiotic stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
LED light treatments enhance neuroprotective properties and differentially impact phenolic compounds and triterpenoid content in Gotu Kola (Centella asiatica (L.) Urb.) Collaboration of hairy root culture and scale-up strategies for enhancing the biosynthesis of medicinal and defensive alkaloids in Papaver sp. Developmental regulators in promoting genetic transformation efficiency in maize and other plants Exploration of machine learning approaches for automated crop disease detection Deciphering the role of SlWRKY36 and SlWRKY51 in salt stress tolerance via modulating ion homeostasis and proline biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1