人工神经网络解决动态编程问题:偏差校正蒙特卡罗算子

IF 1.9 3区 经济学 Q2 ECONOMICS Journal of Economic Dynamics & Control Pub Date : 2024-03-28 DOI:10.1016/j.jedc.2024.104853
Julien Pascal
{"title":"人工神经网络解决动态编程问题:偏差校正蒙特卡罗算子","authors":"Julien Pascal","doi":"10.1016/j.jedc.2024.104853","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Neural Networks (ANNs) are powerful tools that can solve dynamic programming problems arising in economics. In this context, estimating ANN parameters involves minimizing a loss function based on the model's stochastic functional equations. In general, the expectations appearing in the loss function admit no closed-form solution, so numerical approximation techniques must be used. In this paper, I analyze a bias-corrected Monte Carlo operator (bc-MC) that approximates expectations by Monte Carlo. I show that the bc-MC operator is a generalization of the all-in-one expectation operator, already proposed in the literature. I demonstrate that, under some conditions on the primitives of the economic model, the bc-MC operator is the unbiased estimator of the loss function with the minimum variance. I propose a method to optimally set the hyperparameters defining the bc-MC operator, and illustrate the findings numerically with well-known economic models. I also demonstrate that the bc-MC operator can scale to high-dimensional models. With just approximately a minute of computing time, I find a global solution to an economic model with a kink in the decision function and more than 100 dimensions.</p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"162 ","pages":"Article 104853"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks to solve dynamic programming problems: A bias-corrected Monte Carlo operator\",\"authors\":\"Julien Pascal\",\"doi\":\"10.1016/j.jedc.2024.104853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial Neural Networks (ANNs) are powerful tools that can solve dynamic programming problems arising in economics. In this context, estimating ANN parameters involves minimizing a loss function based on the model's stochastic functional equations. In general, the expectations appearing in the loss function admit no closed-form solution, so numerical approximation techniques must be used. In this paper, I analyze a bias-corrected Monte Carlo operator (bc-MC) that approximates expectations by Monte Carlo. I show that the bc-MC operator is a generalization of the all-in-one expectation operator, already proposed in the literature. I demonstrate that, under some conditions on the primitives of the economic model, the bc-MC operator is the unbiased estimator of the loss function with the minimum variance. I propose a method to optimally set the hyperparameters defining the bc-MC operator, and illustrate the findings numerically with well-known economic models. I also demonstrate that the bc-MC operator can scale to high-dimensional models. With just approximately a minute of computing time, I find a global solution to an economic model with a kink in the decision function and more than 100 dimensions.</p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":\"162 \",\"pages\":\"Article 104853\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000459\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924000459","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络(ANN)是一种强大的工具,可以解决经济学中出现的动态编程问题。在这种情况下,估算 ANN 参数需要根据模型的随机函数方程最小化损失函数。一般来说,损失函数中出现的期望值没有闭式解,因此必须使用数值近似技术。在本文中,我分析了一种偏差校正蒙特卡罗算子(bc-MC),该算子通过蒙特卡罗来逼近期望值。我的研究表明,bc-MC 算子是对文献中已经提出的一体化期望算子的概括。我证明,在经济模型基元的某些条件下,bc-MC 算子是方差最小的损失函数无偏估计器。我提出了一种优化设置定义 bc-MC 算子的超参数的方法,并用著名的经济模型对研究结果进行了数值说明。我还证明了 bc-MC 算子可以扩展到高维模型。我只用了大约一分钟的计算时间,就找到了一个决策函数有扭结、维度超过 100 的经济模型的全局解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural networks to solve dynamic programming problems: A bias-corrected Monte Carlo operator

Artificial Neural Networks (ANNs) are powerful tools that can solve dynamic programming problems arising in economics. In this context, estimating ANN parameters involves minimizing a loss function based on the model's stochastic functional equations. In general, the expectations appearing in the loss function admit no closed-form solution, so numerical approximation techniques must be used. In this paper, I analyze a bias-corrected Monte Carlo operator (bc-MC) that approximates expectations by Monte Carlo. I show that the bc-MC operator is a generalization of the all-in-one expectation operator, already proposed in the literature. I demonstrate that, under some conditions on the primitives of the economic model, the bc-MC operator is the unbiased estimator of the loss function with the minimum variance. I propose a method to optimally set the hyperparameters defining the bc-MC operator, and illustrate the findings numerically with well-known economic models. I also demonstrate that the bc-MC operator can scale to high-dimensional models. With just approximately a minute of computing time, I find a global solution to an economic model with a kink in the decision function and more than 100 dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
期刊最新文献
When and how should an incumbent respond to a potentially disruptive event? Systemic risk in banking, fire sales, and macroeconomic disasters The labor market channel of systemic risk Lack of identification of parameters in a simple behavioral macroeconomic model Heterogeneous beliefs and short selling taxes: A note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1