槲皮素-3-O-β-D-葡萄糖醛酸苷通过抑制软骨细胞外基质降解和炎症减轻骨关节炎的症状

IF 5.9 1区 医学 Q1 ORTHOPEDICS Journal of Orthopaedic Translation Pub Date : 2024-03-01 DOI:10.1016/j.jot.2024.01.007
Haijun Mao , Yanwei Feng , Juan Feng , Yalikun Yusufu , Minghui Sun , Lei Yang , Qing Jiang
{"title":"槲皮素-3-O-β-D-葡萄糖醛酸苷通过抑制软骨细胞外基质降解和炎症减轻骨关节炎的症状","authors":"Haijun Mao ,&nbsp;Yanwei Feng ,&nbsp;Juan Feng ,&nbsp;Yalikun Yusufu ,&nbsp;Minghui Sun ,&nbsp;Lei Yang ,&nbsp;Qing Jiang","doi":"10.1016/j.jot.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage. In order to find a safer and more effective drug to treat OA, we investigated the role of quercetin-3-O-β-D-glucuronide (Q3GA) in OA.</p></div><div><h3>Methods</h3><p>We used qRT-PCR and western blots to detect the effects of Q3GA on extracellular matrix (ECM) and inflammation related genes and proteins in interleukin-1β (IL-1β) induced chondrocytes. We determined the effect of Q3GA on the NF-κB pathway using western blots and immunofluorescence. Moreover, the effect of Q3GA on the Nrf2 pathway was evaluated through molecular docking, western blots, and immunofluorescence experiments and further validated by transfection with Nrf2 siRNA. Subsequently, we established a rat model of OA and injected Q3GA into the joint cavity for treatment. After 5 weeks of Q3GA administration, samples were obtained for micro-computed tomography scanning and histopathological staining to determine the effects of Q3GA on OA rats.</p></div><div><h3>Results</h3><p>We found that Q3GA reduced the degradation of ECM and the expression of inflammatory related proteins and genes in primary chondrocytes of rats induced by IL-1β, as well as the expression of nitric oxide (NO) and reactive oxygen species (ROS). It inhibited the activation of the NF-κB pathway by increasing the expression of Nrf2 in the nucleus. In addition, Q3GA inhibited cartilage degradation in OA rats and promoted cartilage repair.</p></div><div><h3>Conclusion</h3><p>Q3GA attenuates OA by inhibiting ECM degradation and inflammation via the Nrf2/NF-κB axis.</p></div><div><h3>The translational potential of this article</h3><p>The results of our study demonstrate the promising potential of Q3GA as a candidate drug for the treatment of OA and reveal its key mechanisms.</p></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"45 ","pages":"Pages 236-246"},"PeriodicalIF":5.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214031X24000184/pdfft?md5=23022c22cd2261fcb642e0bf93698f57&pid=1-s2.0-S2214031X24000184-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quercetin-3-O-β-D-glucuronide attenuates osteoarthritis by inhibiting cartilage extracellular matrix degradation and inflammation\",\"authors\":\"Haijun Mao ,&nbsp;Yanwei Feng ,&nbsp;Juan Feng ,&nbsp;Yalikun Yusufu ,&nbsp;Minghui Sun ,&nbsp;Lei Yang ,&nbsp;Qing Jiang\",\"doi\":\"10.1016/j.jot.2024.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage. In order to find a safer and more effective drug to treat OA, we investigated the role of quercetin-3-O-β-D-glucuronide (Q3GA) in OA.</p></div><div><h3>Methods</h3><p>We used qRT-PCR and western blots to detect the effects of Q3GA on extracellular matrix (ECM) and inflammation related genes and proteins in interleukin-1β (IL-1β) induced chondrocytes. We determined the effect of Q3GA on the NF-κB pathway using western blots and immunofluorescence. Moreover, the effect of Q3GA on the Nrf2 pathway was evaluated through molecular docking, western blots, and immunofluorescence experiments and further validated by transfection with Nrf2 siRNA. Subsequently, we established a rat model of OA and injected Q3GA into the joint cavity for treatment. After 5 weeks of Q3GA administration, samples were obtained for micro-computed tomography scanning and histopathological staining to determine the effects of Q3GA on OA rats.</p></div><div><h3>Results</h3><p>We found that Q3GA reduced the degradation of ECM and the expression of inflammatory related proteins and genes in primary chondrocytes of rats induced by IL-1β, as well as the expression of nitric oxide (NO) and reactive oxygen species (ROS). It inhibited the activation of the NF-κB pathway by increasing the expression of Nrf2 in the nucleus. In addition, Q3GA inhibited cartilage degradation in OA rats and promoted cartilage repair.</p></div><div><h3>Conclusion</h3><p>Q3GA attenuates OA by inhibiting ECM degradation and inflammation via the Nrf2/NF-κB axis.</p></div><div><h3>The translational potential of this article</h3><p>The results of our study demonstrate the promising potential of Q3GA as a candidate drug for the treatment of OA and reveal its key mechanisms.</p></div>\",\"PeriodicalId\":16636,\"journal\":{\"name\":\"Journal of Orthopaedic Translation\",\"volume\":\"45 \",\"pages\":\"Pages 236-246\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214031X24000184/pdfft?md5=23022c22cd2261fcb642e0bf93698f57&pid=1-s2.0-S2214031X24000184-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Translation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214031X24000184\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X24000184","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

目的骨关节炎(OA)是一种以软骨损伤为特征的慢性退行性关节疾病。方法 我们使用 qRT-PCR 和 Western 印迹法检测了 Q3GA 对白细胞介素-1β(IL-1β)诱导的软骨细胞中细胞外基质(ECM)和炎症相关基因和蛋白的影响。我们利用 Western 印迹和免疫荧光测定了 Q3GA 对 NF-κB 通路的影响。此外,我们还通过分子对接、Western印迹和免疫荧光实验评估了Q3GA对Nrf2通路的影响,并通过转染Nrf2 siRNA进一步进行了验证。随后,我们建立了大鼠 OA 模型,并将 Q3GA 注入关节腔进行治疗。结果我们发现,Q3GA能减少IL-1β诱导的大鼠原代软骨细胞中ECM的降解、炎症相关蛋白和基因的表达,以及一氧化氮(NO)和活性氧(ROS)的表达。它通过增加细胞核中 Nrf2 的表达来抑制 NF-κB 通路的激活。结论Q3GA通过Nrf2/NF-κB轴抑制ECM降解和炎症,从而减轻OA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quercetin-3-O-β-D-glucuronide attenuates osteoarthritis by inhibiting cartilage extracellular matrix degradation and inflammation

Objective

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage. In order to find a safer and more effective drug to treat OA, we investigated the role of quercetin-3-O-β-D-glucuronide (Q3GA) in OA.

Methods

We used qRT-PCR and western blots to detect the effects of Q3GA on extracellular matrix (ECM) and inflammation related genes and proteins in interleukin-1β (IL-1β) induced chondrocytes. We determined the effect of Q3GA on the NF-κB pathway using western blots and immunofluorescence. Moreover, the effect of Q3GA on the Nrf2 pathway was evaluated through molecular docking, western blots, and immunofluorescence experiments and further validated by transfection with Nrf2 siRNA. Subsequently, we established a rat model of OA and injected Q3GA into the joint cavity for treatment. After 5 weeks of Q3GA administration, samples were obtained for micro-computed tomography scanning and histopathological staining to determine the effects of Q3GA on OA rats.

Results

We found that Q3GA reduced the degradation of ECM and the expression of inflammatory related proteins and genes in primary chondrocytes of rats induced by IL-1β, as well as the expression of nitric oxide (NO) and reactive oxygen species (ROS). It inhibited the activation of the NF-κB pathway by increasing the expression of Nrf2 in the nucleus. In addition, Q3GA inhibited cartilage degradation in OA rats and promoted cartilage repair.

Conclusion

Q3GA attenuates OA by inhibiting ECM degradation and inflammation via the Nrf2/NF-κB axis.

The translational potential of this article

The results of our study demonstrate the promising potential of Q3GA as a candidate drug for the treatment of OA and reveal its key mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
期刊最新文献
OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis Paeonol inhibits ACSL4 to protect chondrocytes from ferroptosis and ameliorates osteoarthritis progression Innovative development of robot reduction system in geriatric pelvic fractures: A single-center case series in Beijing, China Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine Zhuangyao Jianshen Wan ameliorates senile osteoporosis in SAMP6 mice through Modulation of the GCN5L1-mediated PI3K/Akt/wnt signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1