一氧化碳中毒和光疗

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Nitric oxide : biology and chemistry Pub Date : 2024-04-02 DOI:10.1016/j.niox.2024.04.001
Luca Zazzeron , Walfre Franco , Rox Anderson
{"title":"一氧化碳中毒和光疗","authors":"Luca Zazzeron ,&nbsp;Walfre Franco ,&nbsp;Rox Anderson","doi":"10.1016/j.niox.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon monoxide poisoning and phototherapy\",\"authors\":\"Luca Zazzeron ,&nbsp;Walfre Franco ,&nbsp;Rox Anderson\",\"doi\":\"10.1016/j.niox.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.</p></div>\",\"PeriodicalId\":19357,\"journal\":{\"name\":\"Nitric oxide : biology and chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitric oxide : biology and chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089860324000442\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860324000442","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一氧化碳(CO)中毒是全球毒物相关发病率和死亡率的主要原因。一氧化碳通过与血红蛋白和其他含血红蛋白结合,减少氧气输送并造成组织损伤。有必要对一氧化碳中毒患者进行及时治疗,以防止出现急性和长期并发症。氧气疗法是唯一可用的治疗方法。研究表明,可见光可选择性地从血红蛋白中高效解离 CO,而不会影响氧的亲和力。研究表明,直接对肺部或通过食道内或胸膜内光纤进行肺部光疗,可加快一氧化碳中毒小鼠和大鼠体内一氧化碳的排出速度。在有或没有肺损伤的大鼠和猪身上,使用具有最佳血液暴露于光特性的膜氧合器进行体外清除一氧化碳已被证明可加快一氧化碳的清除率。开发应用肺部光疗的非侵入性技术,以及开发用于人体体外清除一氧化碳的紧凑型高效膜氧合器,可能会在治疗一氧化碳中毒方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon monoxide poisoning and phototherapy

Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nitric oxide : biology and chemistry
Nitric oxide : biology and chemistry 生物-生化与分子生物学
CiteScore
7.50
自引率
7.70%
发文量
74
审稿时长
52 days
期刊介绍: Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.
期刊最新文献
Neurogenic-derived 6-nitrodopamine is the most potent endogenous modulator of the mouse urinary bladder relaxation Generation and characterization of a conditional eNOS knock out mouse model for cell-specific reactivation of eNOS in gain-of-function studies Editorial Board A systematic review and dose‒response meta-analysis of the association between nitrate & nitrite intake and gastroesophageal cancer risk Hydrogen sulfide ameliorated endothelial dysfunction in hyperhomocysteinemia rats: Mechanism of IRE1α/JNK pathway-mediated autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1