利用粒子群优化和精英非支配排序遗传算法规划直流电动弹簧

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-06-27 DOI:10.17775/CSEEJPES.2022.04510
Qingsong Wang;Siwei Li;Hao Ding;Ming Cheng;Giuseppe Buja
{"title":"利用粒子群优化和精英非支配排序遗传算法规划直流电动弹簧","authors":"Qingsong Wang;Siwei Li;Hao Ding;Ming Cheng;Giuseppe Buja","doi":"10.17775/CSEEJPES.2022.04510","DOIUrl":null,"url":null,"abstract":"This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"574-583"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165667","citationCount":"0","resultStr":"{\"title\":\"Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-Dominated Sorting Genetic Algorithm\",\"authors\":\"Qingsong Wang;Siwei Li;Hao Ding;Ming Cheng;Giuseppe Buja\",\"doi\":\"10.17775/CSEEJPES.2022.04510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 2\",\"pages\":\"574-583\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165667\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10165667/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10165667/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了并联直流电泉(DCES)的规划问题。DCES 是一种需求侧管理方法,通过调整非关键负载(NCL)和内部储能,实现用电和发电的自动匹配。它可以为关键负载(CL)提供更高的电能质量,减少电能不平衡,缓解储能系统(RES)的压力。本文提出了一种并联 DCES 的规划方法,以实现稳定性增益、经济效益和可再生能源渗透率的最大化。规划模型采用主优化和子优化相结合的方式,以突出目标的优先性。主优化用于提高网络的稳定性,子优化旨在提高经济效益和可再生能源的允许渗透率。这个问题是一个多变量非线性混合整数问题,使用普通求解器需要进行大量计算。因此,该模型采用了粒子群优化算法(PSO)和非支配排序遗传算法(NSGA-II)。考虑到可再生能源的不确定性,本文基于情景分析获得的确定性情景,在 IEEE 33 总线系统上验证了所提规划方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-Dominated Sorting Genetic Algorithm
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1