{"title":"基于深度学习神经网络的自动图像分析支持活性污泥的显微研究","authors":"Marcin Dziadosz, D. Majerek, Grzegorz Łagód","doi":"10.12911/22998993/185317","DOIUrl":null,"url":null,"abstract":"Paper presents microscopic studies of activated sludge supported by automatic image analysis based on deep learn - ing neural networks. The organisms classified as Arcella vulgaris were chosen for the research. They frequently occur in the waters containing organic substances as well as WWTPs employing the activated sludge method. Usually, they can be clearly seen and counted using a standard optical microscope, as a result of their distinc - tive appearance, numerous population and passive behavior. Thus, these organisms constitute a viable object for detection task. Paper refers to the comparison of performance of deep learning networks namely YOLOv4 and YOLOv8, which conduct automatic image analysis of the afore-mentioned organisms. YOLO (You Only Look Once) constitutes a one-stage object detection model that look at the analyzed image once and allow real-time detection without a marked accuracy loss. The training of the applied YOLO models was carried out using sample microscopic images of activated sludge. The relevant training data set was created by manually labeling the digital images of organisms, followed by calculation and comparison of various metrics, including recall, precision, and accuracy. The architecture of the networks built for the detection task was general, which means that the structure of the layers and filters was not affected by the purpose of using the models. Accounting mentioned universal construction of the models, the results of the accuracy and quality of the classification can be considered as very good. This means that the general architecture of the YOLO networks can also be used for specific tasks such as identification of shell amoebas in activated sludge.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Studies of Activated Sludge Supported by Automatic Image Analysis Based on Deep Learning Neural Networks\",\"authors\":\"Marcin Dziadosz, D. Majerek, Grzegorz Łagód\",\"doi\":\"10.12911/22998993/185317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paper presents microscopic studies of activated sludge supported by automatic image analysis based on deep learn - ing neural networks. The organisms classified as Arcella vulgaris were chosen for the research. They frequently occur in the waters containing organic substances as well as WWTPs employing the activated sludge method. Usually, they can be clearly seen and counted using a standard optical microscope, as a result of their distinc - tive appearance, numerous population and passive behavior. Thus, these organisms constitute a viable object for detection task. Paper refers to the comparison of performance of deep learning networks namely YOLOv4 and YOLOv8, which conduct automatic image analysis of the afore-mentioned organisms. YOLO (You Only Look Once) constitutes a one-stage object detection model that look at the analyzed image once and allow real-time detection without a marked accuracy loss. The training of the applied YOLO models was carried out using sample microscopic images of activated sludge. The relevant training data set was created by manually labeling the digital images of organisms, followed by calculation and comparison of various metrics, including recall, precision, and accuracy. The architecture of the networks built for the detection task was general, which means that the structure of the layers and filters was not affected by the purpose of using the models. Accounting mentioned universal construction of the models, the results of the accuracy and quality of the classification can be considered as very good. This means that the general architecture of the YOLO networks can also be used for specific tasks such as identification of shell amoebas in activated sludge.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/185317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/185317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Microscopic Studies of Activated Sludge Supported by Automatic Image Analysis Based on Deep Learning Neural Networks
Paper presents microscopic studies of activated sludge supported by automatic image analysis based on deep learn - ing neural networks. The organisms classified as Arcella vulgaris were chosen for the research. They frequently occur in the waters containing organic substances as well as WWTPs employing the activated sludge method. Usually, they can be clearly seen and counted using a standard optical microscope, as a result of their distinc - tive appearance, numerous population and passive behavior. Thus, these organisms constitute a viable object for detection task. Paper refers to the comparison of performance of deep learning networks namely YOLOv4 and YOLOv8, which conduct automatic image analysis of the afore-mentioned organisms. YOLO (You Only Look Once) constitutes a one-stage object detection model that look at the analyzed image once and allow real-time detection without a marked accuracy loss. The training of the applied YOLO models was carried out using sample microscopic images of activated sludge. The relevant training data set was created by manually labeling the digital images of organisms, followed by calculation and comparison of various metrics, including recall, precision, and accuracy. The architecture of the networks built for the detection task was general, which means that the structure of the layers and filters was not affected by the purpose of using the models. Accounting mentioned universal construction of the models, the results of the accuracy and quality of the classification can be considered as very good. This means that the general architecture of the YOLO networks can also be used for specific tasks such as identification of shell amoebas in activated sludge.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment