Shanmukhaprasanthi Tammineni, Swaraiya Madhuri Rayavarapu, S. Gottapu, Raj Kumar Goswami
{"title":"使用冲浪算法修复数字图像","authors":"Shanmukhaprasanthi Tammineni, Swaraiya Madhuri Rayavarapu, S. Gottapu, Raj Kumar Goswami","doi":"10.35784/iapgos.5373","DOIUrl":null,"url":null,"abstract":"In contemporary times, the preservation of scientific and creative endeavours often relies on the utilization of film and image archives, hence emphasizing the significance of image processing as a critical undertaking. Image inpainting refers to the process of digitally altering an image in a manner that renders the adjustments imperceptible to a viewer lacking knowledge of the original image. Image inpainting is a technique mostly employed to restore damaged regions within an image by utilizing information obtained from matching characteristics in relevant images. This process involves filling in the damaged areas and removing undesired objects. The SURF (Speeded Up Robust Feature) algorithm under consideration is partitioned into three primary phases. Firstly, the essential characteristics of the impaired image and the pertinent image are identified. In the second stage, the relationship between the damaged image and the relevant image is determined in terms of translation, scaling, and rotation. Ultimately, the destroyed area is reconstructed through the application of the inverse transformation. The quality assessment of inpainted images can be evaluated using metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE). The experimental findings provide evidence that the suggested inpainting technique is effective in terms of both speed and quality.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"66 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIGITAL IMAGE RESTORATION USING SURF ALGORITHM\",\"authors\":\"Shanmukhaprasanthi Tammineni, Swaraiya Madhuri Rayavarapu, S. Gottapu, Raj Kumar Goswami\",\"doi\":\"10.35784/iapgos.5373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contemporary times, the preservation of scientific and creative endeavours often relies on the utilization of film and image archives, hence emphasizing the significance of image processing as a critical undertaking. Image inpainting refers to the process of digitally altering an image in a manner that renders the adjustments imperceptible to a viewer lacking knowledge of the original image. Image inpainting is a technique mostly employed to restore damaged regions within an image by utilizing information obtained from matching characteristics in relevant images. This process involves filling in the damaged areas and removing undesired objects. The SURF (Speeded Up Robust Feature) algorithm under consideration is partitioned into three primary phases. Firstly, the essential characteristics of the impaired image and the pertinent image are identified. In the second stage, the relationship between the damaged image and the relevant image is determined in terms of translation, scaling, and rotation. Ultimately, the destroyed area is reconstructed through the application of the inverse transformation. The quality assessment of inpainted images can be evaluated using metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE). The experimental findings provide evidence that the suggested inpainting technique is effective in terms of both speed and quality.\",\"PeriodicalId\":504633,\"journal\":{\"name\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"volume\":\"66 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/iapgos.5373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In contemporary times, the preservation of scientific and creative endeavours often relies on the utilization of film and image archives, hence emphasizing the significance of image processing as a critical undertaking. Image inpainting refers to the process of digitally altering an image in a manner that renders the adjustments imperceptible to a viewer lacking knowledge of the original image. Image inpainting is a technique mostly employed to restore damaged regions within an image by utilizing information obtained from matching characteristics in relevant images. This process involves filling in the damaged areas and removing undesired objects. The SURF (Speeded Up Robust Feature) algorithm under consideration is partitioned into three primary phases. Firstly, the essential characteristics of the impaired image and the pertinent image are identified. In the second stage, the relationship between the damaged image and the relevant image is determined in terms of translation, scaling, and rotation. Ultimately, the destroyed area is reconstructed through the application of the inverse transformation. The quality assessment of inpainted images can be evaluated using metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE). The experimental findings provide evidence that the suggested inpainting technique is effective in terms of both speed and quality.