利用光梯度推移(LightGBM)和超参数调整进行糖尿病疾病检测分类

Elisa Ramadanti, Devi Aprilya Dinathi, Christianskaditya Christianskaditya, Didih Rizki Chandranegara
{"title":"利用光梯度推移(LightGBM)和超参数调整进行糖尿病疾病检测分类","authors":"Elisa Ramadanti, Devi Aprilya Dinathi, Christianskaditya Christianskaditya, Didih Rizki Chandranegara","doi":"10.33395/sinkron.v8i2.13530","DOIUrl":null,"url":null,"abstract":"Diabetes is a condition caused by an imbalance between the need for insulin in the body and insufficient insulin production by the pancreas, causing an increase in blood sugar concentration. This study aims to find the best classification performance on diabetes datasets with the LightGBM method. The dataset used consists of 768 rows and 9 columns, with target values of 0 and 1. In this study, resampling is applied to overcome data imbalance using SMOTE and perform hyperparameter optimization. Model evaluation is performed using confusion matrix and various metrics such as accuracy, recall, precision and f1-score. This research conducted several tests. In hyperparameter optimization tests using GridSearchCV and RandomSearchCV, the LightGBM method showed good performance. In tests that apply data resampling, the LightGBM method achieves the highest accuracy, namely the LightGBM method with GridSearchCV optimization with the highest accuracy reaching 84%, while LightGBM with RandomSearchCV optimization reaches 82% accuracy.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"102 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes Disease Detection Classification Using Light Gradient Boosting (LightGBM) With Hyperparameter Tuning\",\"authors\":\"Elisa Ramadanti, Devi Aprilya Dinathi, Christianskaditya Christianskaditya, Didih Rizki Chandranegara\",\"doi\":\"10.33395/sinkron.v8i2.13530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a condition caused by an imbalance between the need for insulin in the body and insufficient insulin production by the pancreas, causing an increase in blood sugar concentration. This study aims to find the best classification performance on diabetes datasets with the LightGBM method. The dataset used consists of 768 rows and 9 columns, with target values of 0 and 1. In this study, resampling is applied to overcome data imbalance using SMOTE and perform hyperparameter optimization. Model evaluation is performed using confusion matrix and various metrics such as accuracy, recall, precision and f1-score. This research conducted several tests. In hyperparameter optimization tests using GridSearchCV and RandomSearchCV, the LightGBM method showed good performance. In tests that apply data resampling, the LightGBM method achieves the highest accuracy, namely the LightGBM method with GridSearchCV optimization with the highest accuracy reaching 84%, while LightGBM with RandomSearchCV optimization reaches 82% accuracy.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"102 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i2.13530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i2.13530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是由于体内对胰岛素的需求与胰腺分泌的胰岛素不足之间的不平衡引起的血糖浓度升高。本研究旨在利用 LightGBM 方法找出糖尿病数据集的最佳分类性能。所使用的数据集包括 768 行和 9 列,目标值为 0 和 1。在本研究中,使用 SMOTE 进行重采样以克服数据不平衡,并进行超参数优化。使用混淆矩阵和各种指标(如准确率、召回率、精确度和 f1 分数)对模型进行评估。这项研究进行了多项测试。在使用 GridSearchCV 和 RandomSearchCV 进行的超参数优化测试中,LightGBM 方法表现出色。在应用数据重采样的测试中,LightGBM 方法获得了最高的准确率,即采用 GridSearchCV 优化的 LightGBM 方法的准确率最高,达到 84%,而采用 RandomSearchCV 优化的 LightGBM 方法的准确率为 82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diabetes Disease Detection Classification Using Light Gradient Boosting (LightGBM) With Hyperparameter Tuning
Diabetes is a condition caused by an imbalance between the need for insulin in the body and insufficient insulin production by the pancreas, causing an increase in blood sugar concentration. This study aims to find the best classification performance on diabetes datasets with the LightGBM method. The dataset used consists of 768 rows and 9 columns, with target values of 0 and 1. In this study, resampling is applied to overcome data imbalance using SMOTE and perform hyperparameter optimization. Model evaluation is performed using confusion matrix and various metrics such as accuracy, recall, precision and f1-score. This research conducted several tests. In hyperparameter optimization tests using GridSearchCV and RandomSearchCV, the LightGBM method showed good performance. In tests that apply data resampling, the LightGBM method achieves the highest accuracy, namely the LightGBM method with GridSearchCV optimization with the highest accuracy reaching 84%, while LightGBM with RandomSearchCV optimization reaches 82% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
204
审稿时长
4 weeks
期刊最新文献
Sales Trend Analysis With Machine Learning Linear Regression Algorithm Method Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models Comparison Of Exponesial Smoothing With Linear Regression Predicting Amount Of Goods Sales Decision Support System Using the TOPSIS Method in New Teacher Selection A CNN Model for ODOL Truck Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1