Muhammad Tajuddin Reduan, P. Mativenga, Lin Li, J. Ouyang, N. Mirhosseini, Zhu Liu
{"title":"激光材料加工过程中门到门碳排放的通用数学模型","authors":"Muhammad Tajuddin Reduan, P. Mativenga, Lin Li, J. Ouyang, N. Mirhosseini, Zhu Liu","doi":"10.1177/09544054241234095","DOIUrl":null,"url":null,"abstract":"The manufacturing industry needs to reduce carbon emissions in support of the net-zero agenda. Carbon emissions are classified into three operational groups based on the framework of the Greenhouse Gas (GHG) Protocol. Although extensive research has been undertaken, this has focused on energy consumption, which contributes to Scope 2 emissions only. In order to address a knowledge gap relating to the total environmental burden of laser material processing, the paper develops a generic mathematical model covering all three operational groups of emissions in relation to the gate-to-gate scope of life cycle assessment. The model was applied to selective laser removal of coating to evaluate the environmental burden and to understand which impact factor contributes the highest emissions. Scope 2 emissions had the highest contribution to the environmental burden in the laser removal of coatings from substrates compared to Scope 1 and 3. The mathematical model provides a simple, accessible and less complex tool for evaluating carbon emissions in laser processing. This supports the net-zero emission agenda.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generic mathematical model for gate-to-gate carbon emissions in laser materials processing\",\"authors\":\"Muhammad Tajuddin Reduan, P. Mativenga, Lin Li, J. Ouyang, N. Mirhosseini, Zhu Liu\",\"doi\":\"10.1177/09544054241234095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manufacturing industry needs to reduce carbon emissions in support of the net-zero agenda. Carbon emissions are classified into three operational groups based on the framework of the Greenhouse Gas (GHG) Protocol. Although extensive research has been undertaken, this has focused on energy consumption, which contributes to Scope 2 emissions only. In order to address a knowledge gap relating to the total environmental burden of laser material processing, the paper develops a generic mathematical model covering all three operational groups of emissions in relation to the gate-to-gate scope of life cycle assessment. The model was applied to selective laser removal of coating to evaluate the environmental burden and to understand which impact factor contributes the highest emissions. Scope 2 emissions had the highest contribution to the environmental burden in the laser removal of coatings from substrates compared to Scope 1 and 3. The mathematical model provides a simple, accessible and less complex tool for evaluating carbon emissions in laser processing. This supports the net-zero emission agenda.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241234095\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241234095","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A generic mathematical model for gate-to-gate carbon emissions in laser materials processing
The manufacturing industry needs to reduce carbon emissions in support of the net-zero agenda. Carbon emissions are classified into three operational groups based on the framework of the Greenhouse Gas (GHG) Protocol. Although extensive research has been undertaken, this has focused on energy consumption, which contributes to Scope 2 emissions only. In order to address a knowledge gap relating to the total environmental burden of laser material processing, the paper develops a generic mathematical model covering all three operational groups of emissions in relation to the gate-to-gate scope of life cycle assessment. The model was applied to selective laser removal of coating to evaluate the environmental burden and to understand which impact factor contributes the highest emissions. Scope 2 emissions had the highest contribution to the environmental burden in the laser removal of coatings from substrates compared to Scope 1 and 3. The mathematical model provides a simple, accessible and less complex tool for evaluating carbon emissions in laser processing. This supports the net-zero emission agenda.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.