C 基 XxY1-xC (X, Y≡ Si, Ge, Sn) 合金随成分变化的声子和热力学特性

D. Talwar
{"title":"C 基 XxY1-xC (X, Y≡ Si, Ge, Sn) 合金随成分变化的声子和热力学特性","authors":"D. Talwar","doi":"10.3390/inorganics12040100","DOIUrl":null,"url":null,"abstract":"Novel zinc-blende (zb) group-IV binary XC and ternary XxY1−xC alloys (X, Y ≡ Si, Ge, and Sn) have recently gained scientific and technological interest as promising alternatives to silicon for high-temperature, high-power optoelectronics, gas sensing and photovoltaic applications. Despite numerous efforts made to simulate the structural, electronic, and dynamical properties of binary materials, no vibrational and/or thermodynamic studies exist for the ternary alloys. By adopting a realistic rigid-ion-model (RIM), we have reported methodical calculations to comprehend the lattice dynamics and thermodynamic traits of both binary and ternary compounds. With appropriate interatomic force constants (IFCs) of XC at ambient pressure, the study of phonon dispersions offered positive values of acoustic modes in the entire Brillouin zone (BZ)—implying their structural stability. For XxY1−xC, we have used Green’s function (GF) theory in the virtual crystal approximation to calculate composition x, dependent and one phonon density of states . With no additional IFCs, the RIM GF approach has provided complete in the crystallographic directions for both optical and acoustical phonon branches. In quasi-harmonic approximation, the theory predicted thermodynamic characteristics (e.g., Debye temperature ΘD(T) and specific heat Cv(T)) for XxY1−xC alloys. Unlike SiC, the GeC, SnC and GexSn1−xC materials have exhibited weak IFCs with low [high] values of ΘD(T) [Cv(T)]. We feel that the latter materials may not be suitable as fuel-cladding layers in nuclear reactors and high-temperature applications. However, the XC and XxY1−xC can still be used to design multi-quantum well or superlattice-based micro-/nano devices for different strategic and civilian application needs.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition-Dependent Phonon and Thermodynamic Characteristics of C-Based XxY1−xC (X, Y≡ Si, Ge, Sn) Alloys\",\"authors\":\"D. Talwar\",\"doi\":\"10.3390/inorganics12040100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel zinc-blende (zb) group-IV binary XC and ternary XxY1−xC alloys (X, Y ≡ Si, Ge, and Sn) have recently gained scientific and technological interest as promising alternatives to silicon for high-temperature, high-power optoelectronics, gas sensing and photovoltaic applications. Despite numerous efforts made to simulate the structural, electronic, and dynamical properties of binary materials, no vibrational and/or thermodynamic studies exist for the ternary alloys. By adopting a realistic rigid-ion-model (RIM), we have reported methodical calculations to comprehend the lattice dynamics and thermodynamic traits of both binary and ternary compounds. With appropriate interatomic force constants (IFCs) of XC at ambient pressure, the study of phonon dispersions offered positive values of acoustic modes in the entire Brillouin zone (BZ)—implying their structural stability. For XxY1−xC, we have used Green’s function (GF) theory in the virtual crystal approximation to calculate composition x, dependent and one phonon density of states . With no additional IFCs, the RIM GF approach has provided complete in the crystallographic directions for both optical and acoustical phonon branches. In quasi-harmonic approximation, the theory predicted thermodynamic characteristics (e.g., Debye temperature ΘD(T) and specific heat Cv(T)) for XxY1−xC alloys. Unlike SiC, the GeC, SnC and GexSn1−xC materials have exhibited weak IFCs with low [high] values of ΘD(T) [Cv(T)]. We feel that the latter materials may not be suitable as fuel-cladding layers in nuclear reactors and high-temperature applications. However, the XC and XxY1−xC can still be used to design multi-quantum well or superlattice-based micro-/nano devices for different strategic and civilian application needs.\",\"PeriodicalId\":507601,\"journal\":{\"name\":\"Inorganics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12040100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics12040100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型锌-蓝晶(zb)IV 族二元 XC 和三元 XxY1-xC 合金(X、Y ≡ Si、Ge 和 Sn)作为硅的替代品,在高温、大功率光电子学、气体传感和光伏应用方面具有广阔的前景,最近引起了科学和技术界的兴趣。尽管在模拟二元材料的结构、电子和动力学特性方面做出了许多努力,但目前还没有针对三元合金的振动和/或热力学研究。通过采用现实的刚性离子模型(RIM),我们报告了理解二元和三元化合物晶格动力学和热力学特性的方法计算。利用 XC 在环境压力下的适当原子间力常数(IFC),声子散布研究提供了整个布里渊区(BZ)中声学模式的正值--这意味着它们的结构稳定性。对于 XxY1-xC,我们使用虚拟晶体近似的格林函数(GF)理论来计算成分 x、依赖性和一个声子的状态密度。在没有额外 IFC 的情况下,RIM GF 方法为光学和声学声子分支提供了完整的晶体学方向。在准谐波近似条件下,该理论预测了 XxY1-xC 合金的热力学特性(如 Debye 温度 ΘD(T) 和比热 Cv(T))。与 SiC 不同,GeC、SnC 和 GexSn1-xC 材料表现出弱 IFC,ΘD(T) [Cv(T)] 值低[高]。我们认为后一种材料可能不适合作为核反应堆和高温应用中的燃料包层。不过,XC 和 XxY1-xC 仍可用于设计多量子阱或基于超晶格的微/纳米器件,以满足不同的战略和民用应用需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composition-Dependent Phonon and Thermodynamic Characteristics of C-Based XxY1−xC (X, Y≡ Si, Ge, Sn) Alloys
Novel zinc-blende (zb) group-IV binary XC and ternary XxY1−xC alloys (X, Y ≡ Si, Ge, and Sn) have recently gained scientific and technological interest as promising alternatives to silicon for high-temperature, high-power optoelectronics, gas sensing and photovoltaic applications. Despite numerous efforts made to simulate the structural, electronic, and dynamical properties of binary materials, no vibrational and/or thermodynamic studies exist for the ternary alloys. By adopting a realistic rigid-ion-model (RIM), we have reported methodical calculations to comprehend the lattice dynamics and thermodynamic traits of both binary and ternary compounds. With appropriate interatomic force constants (IFCs) of XC at ambient pressure, the study of phonon dispersions offered positive values of acoustic modes in the entire Brillouin zone (BZ)—implying their structural stability. For XxY1−xC, we have used Green’s function (GF) theory in the virtual crystal approximation to calculate composition x, dependent and one phonon density of states . With no additional IFCs, the RIM GF approach has provided complete in the crystallographic directions for both optical and acoustical phonon branches. In quasi-harmonic approximation, the theory predicted thermodynamic characteristics (e.g., Debye temperature ΘD(T) and specific heat Cv(T)) for XxY1−xC alloys. Unlike SiC, the GeC, SnC and GexSn1−xC materials have exhibited weak IFCs with low [high] values of ΘD(T) [Cv(T)]. We feel that the latter materials may not be suitable as fuel-cladding layers in nuclear reactors and high-temperature applications. However, the XC and XxY1−xC can still be used to design multi-quantum well or superlattice-based micro-/nano devices for different strategic and civilian application needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physicochemical and Toxicological Screening of Silver Nanoparticle Biosynthesis from Punica granatum Peel Extract Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation Evaluation of DNA and BSA-Binding, Nuclease Activity, and Anticancer Properties of New Cu(II) and Ni(II) Complexes with Quinoline-Derived Sulfonamides Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies Supramolecular Assemblies in Mn (II) and Zn (II) Metal–Organic Compounds Involving Phenanthroline and Benzoate: Experimental and Theoretical Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1