{"title":"关于 4H-32SiC 作为光伏电池能量转换材料的时间相关特性的第一性原理研究","authors":"Xiaoyi Li, Jingbin Lu, Xinrui Liu, Yu Zhang, Yuxin Liu, Yuehui Zhang, Fubo Tian","doi":"10.35848/1882-0786/ad388d","DOIUrl":null,"url":null,"abstract":"\n The radioactive 4H-32SiC is applied as energy converting material to fabricate high performance betavoltaic batteries. The time-related component change is considered, and the structural, stability and electrical property changes are calculated by Density Functional Theory (DFT). As time goes by, the number of 32Si atoms decrease exponentially while the concentration of 32S increases gradually. The Si63PC64 configurations have smaller lattice constants, while the lattices of Si62PSC64 configurations are larger. All Si63PC64 and Si62PSC64 configurations have very small bandgaps indicating the metallic behavior. This suggests that the betavoltaic battery with 4H-32SiC is likely to transform into a Schottky diode over time.","PeriodicalId":503885,"journal":{"name":"Applied Physics Express","volume":"34 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles study on the time-related properties of 4H-32SiC as energy converting material of betavoltaic battery\",\"authors\":\"Xiaoyi Li, Jingbin Lu, Xinrui Liu, Yu Zhang, Yuxin Liu, Yuehui Zhang, Fubo Tian\",\"doi\":\"10.35848/1882-0786/ad388d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The radioactive 4H-32SiC is applied as energy converting material to fabricate high performance betavoltaic batteries. The time-related component change is considered, and the structural, stability and electrical property changes are calculated by Density Functional Theory (DFT). As time goes by, the number of 32Si atoms decrease exponentially while the concentration of 32S increases gradually. The Si63PC64 configurations have smaller lattice constants, while the lattices of Si62PSC64 configurations are larger. All Si63PC64 and Si62PSC64 configurations have very small bandgaps indicating the metallic behavior. This suggests that the betavoltaic battery with 4H-32SiC is likely to transform into a Schottky diode over time.\",\"PeriodicalId\":503885,\"journal\":{\"name\":\"Applied Physics Express\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35848/1882-0786/ad388d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad388d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First principles study on the time-related properties of 4H-32SiC as energy converting material of betavoltaic battery
The radioactive 4H-32SiC is applied as energy converting material to fabricate high performance betavoltaic batteries. The time-related component change is considered, and the structural, stability and electrical property changes are calculated by Density Functional Theory (DFT). As time goes by, the number of 32Si atoms decrease exponentially while the concentration of 32S increases gradually. The Si63PC64 configurations have smaller lattice constants, while the lattices of Si62PSC64 configurations are larger. All Si63PC64 and Si62PSC64 configurations have very small bandgaps indicating the metallic behavior. This suggests that the betavoltaic battery with 4H-32SiC is likely to transform into a Schottky diode over time.