{"title":"使用机器学习技术为住房开发项目提供户型规范:泰国曼谷大都市区研究","authors":"Kongkoon Tochaiwat, Patcharida Pultawee","doi":"10.54028/nj202423403","DOIUrl":null,"url":null,"abstract":"Specifying the house type of a housing development project is extremely necessary. However, the determination of a project type nowadays has become a delicate matter, requiring the expertise and knowledge of seasoned project developers. This study aimed to apply four machine learning techniques: Decision Tree, Random Forest, Gradient Boosted Tree and Ensemble Classifier, to analyze the data from 179 housing estate projects collected from market reports of real estate companies in Thailand, with a focus on selecting projects with average monthly sales rates that are higher than the average of all acquired projects. This process resulted in a reduced dataset of 59 projects, including 31 townhouses, 22 single-family houses, and six semi-detached houses. As a result, the Ensemble Classifier model has the highest accuracy of 90.91%. The factors most influential in identifying the type of project are the distances from a main road, sky train station, bus station, hospital, and department store. Single-detached house projects are suitable for locations with high potential. The ideal location should be in proximity to a main road, bus station, department store, and hospital. In addition, townhouse projects are ideal for medium-potential locations that are not near shopping malls, but still require proximity to a hospital, sky train station, or bus station. Ultimately, semi-detached house projects are ideal for medium-potential locations that require proximity to a main road for convenient access to sky train station or public transportation, depending on the specific context.","PeriodicalId":502924,"journal":{"name":"Nakhara : Journal of Environmental Design and Planning","volume":"15 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"House Type Specification for Housing Development Project Using Machine Learning Techniques: A Study From Bangkok Metropolitan Region, Thailand\",\"authors\":\"Kongkoon Tochaiwat, Patcharida Pultawee\",\"doi\":\"10.54028/nj202423403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specifying the house type of a housing development project is extremely necessary. However, the determination of a project type nowadays has become a delicate matter, requiring the expertise and knowledge of seasoned project developers. This study aimed to apply four machine learning techniques: Decision Tree, Random Forest, Gradient Boosted Tree and Ensemble Classifier, to analyze the data from 179 housing estate projects collected from market reports of real estate companies in Thailand, with a focus on selecting projects with average monthly sales rates that are higher than the average of all acquired projects. This process resulted in a reduced dataset of 59 projects, including 31 townhouses, 22 single-family houses, and six semi-detached houses. As a result, the Ensemble Classifier model has the highest accuracy of 90.91%. The factors most influential in identifying the type of project are the distances from a main road, sky train station, bus station, hospital, and department store. Single-detached house projects are suitable for locations with high potential. The ideal location should be in proximity to a main road, bus station, department store, and hospital. In addition, townhouse projects are ideal for medium-potential locations that are not near shopping malls, but still require proximity to a hospital, sky train station, or bus station. Ultimately, semi-detached house projects are ideal for medium-potential locations that require proximity to a main road for convenient access to sky train station or public transportation, depending on the specific context.\",\"PeriodicalId\":502924,\"journal\":{\"name\":\"Nakhara : Journal of Environmental Design and Planning\",\"volume\":\"15 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nakhara : Journal of Environmental Design and Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54028/nj202423403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nakhara : Journal of Environmental Design and Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54028/nj202423403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
House Type Specification for Housing Development Project Using Machine Learning Techniques: A Study From Bangkok Metropolitan Region, Thailand
Specifying the house type of a housing development project is extremely necessary. However, the determination of a project type nowadays has become a delicate matter, requiring the expertise and knowledge of seasoned project developers. This study aimed to apply four machine learning techniques: Decision Tree, Random Forest, Gradient Boosted Tree and Ensemble Classifier, to analyze the data from 179 housing estate projects collected from market reports of real estate companies in Thailand, with a focus on selecting projects with average monthly sales rates that are higher than the average of all acquired projects. This process resulted in a reduced dataset of 59 projects, including 31 townhouses, 22 single-family houses, and six semi-detached houses. As a result, the Ensemble Classifier model has the highest accuracy of 90.91%. The factors most influential in identifying the type of project are the distances from a main road, sky train station, bus station, hospital, and department store. Single-detached house projects are suitable for locations with high potential. The ideal location should be in proximity to a main road, bus station, department store, and hospital. In addition, townhouse projects are ideal for medium-potential locations that are not near shopping malls, but still require proximity to a hospital, sky train station, or bus station. Ultimately, semi-detached house projects are ideal for medium-potential locations that require proximity to a main road for convenient access to sky train station or public transportation, depending on the specific context.