{"title":"材料变化对排气消声器热效应和声效应的数值研究","authors":"H. Kepekci, Mehmet Emin Agca","doi":"10.18245/ijaet.1407245","DOIUrl":null,"url":null,"abstract":"Exhaust mufflers are used in automobiles to prevent the noise arising from exhaust gases resulting from internal combustion engines. With the advancement of the automotive industry, exhaust mufflers have become more complex over time to reduce noise and increase driving comfort. Within the scope of this study, exhaust muffler geometries with different geometries have been designed, and harmonic acoustic analyses have been carried out. In the analysis, the airflow speed has been accepted as 30 m/s. Acoustic pressure and transmission loss data obtained because of analyses performed with 1Pa pressure input have been evaluated. As a result of the evaluations, it has been concluded that the muffler modeled in a complex structure has been better acoustically. Although the main task of exhaust muffler is to reduce the sound level at the exit of exhaust gases, it is also important to reduce the temperature of the air in the exhaust system and have good thermal conductivity so as not to jeopardize the thermal safety of the system. For this reason, CFD thermal flow analysis has been carried out with 4 different materials using a complex design with high acoustic efficiency. Gray cast iron, stainless steel, 1020 steel, and aluminum have been used as materials. In this part of the study, it has been determined that the use of aluminum material has been better in terms of thermal efficiency.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler\",\"authors\":\"H. Kepekci, Mehmet Emin Agca\",\"doi\":\"10.18245/ijaet.1407245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exhaust mufflers are used in automobiles to prevent the noise arising from exhaust gases resulting from internal combustion engines. With the advancement of the automotive industry, exhaust mufflers have become more complex over time to reduce noise and increase driving comfort. Within the scope of this study, exhaust muffler geometries with different geometries have been designed, and harmonic acoustic analyses have been carried out. In the analysis, the airflow speed has been accepted as 30 m/s. Acoustic pressure and transmission loss data obtained because of analyses performed with 1Pa pressure input have been evaluated. As a result of the evaluations, it has been concluded that the muffler modeled in a complex structure has been better acoustically. Although the main task of exhaust muffler is to reduce the sound level at the exit of exhaust gases, it is also important to reduce the temperature of the air in the exhaust system and have good thermal conductivity so as not to jeopardize the thermal safety of the system. For this reason, CFD thermal flow analysis has been carried out with 4 different materials using a complex design with high acoustic efficiency. Gray cast iron, stainless steel, 1020 steel, and aluminum have been used as materials. In this part of the study, it has been determined that the use of aluminum material has been better in terms of thermal efficiency.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/ijaet.1407245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/ijaet.1407245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler
Exhaust mufflers are used in automobiles to prevent the noise arising from exhaust gases resulting from internal combustion engines. With the advancement of the automotive industry, exhaust mufflers have become more complex over time to reduce noise and increase driving comfort. Within the scope of this study, exhaust muffler geometries with different geometries have been designed, and harmonic acoustic analyses have been carried out. In the analysis, the airflow speed has been accepted as 30 m/s. Acoustic pressure and transmission loss data obtained because of analyses performed with 1Pa pressure input have been evaluated. As a result of the evaluations, it has been concluded that the muffler modeled in a complex structure has been better acoustically. Although the main task of exhaust muffler is to reduce the sound level at the exit of exhaust gases, it is also important to reduce the temperature of the air in the exhaust system and have good thermal conductivity so as not to jeopardize the thermal safety of the system. For this reason, CFD thermal flow analysis has been carried out with 4 different materials using a complex design with high acoustic efficiency. Gray cast iron, stainless steel, 1020 steel, and aluminum have been used as materials. In this part of the study, it has been determined that the use of aluminum material has been better in terms of thermal efficiency.