从废铝罐中提取高纯超细氧化铝粉的制备技术及热传导机理研究

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Foundry Engineering Pub Date : 2024-03-26 DOI:10.24425/afe.2024.149264
Chengmin Wang, Anatoly Politov, Xiuhui Wang, Jinlong Yang
{"title":"从废铝罐中提取高纯超细氧化铝粉的制备技术及热传导机理研究","authors":"Chengmin Wang, Anatoly Politov, Xiuhui Wang, Jinlong Yang","doi":"10.24425/afe.2024.149264","DOIUrl":null,"url":null,"abstract":"In view of the increasing scarcity of bauxite resources in China, the high energy consumption and high pollution of electrolytic aluminum, and the requirements for energy conservation and environmental protection, aluminum recycling and high-value utilization of its derivatives have evolved into a crucial development requirement for the aluminum industry in the future. As an important part of the development of recycled aluminum resources, the high-value application of scrap aluminum cans has always been a hot research topic in various recycled aluminum processing enterprises and scientific research units. The traditional regeneration system of waste cans includes a series of complex technological processes such as pretreatment, paint removal, smelting system and casting system, which is difficult to control in the middle of the process. Most of the recycled scrap aluminum cans are cast and downgraded for later use, except for a part of them used as alloy materials for new cans. In this paper, combined with the research on the preparation of metal aluminum alkoxide, combined with recrystallization heat conduction to further study the effective dissolution or adsorption how to remove impurity elements to obtain high-purity aluminum alcohol salt mechanism research, and thermal effect of alcohols with different carbon chains on the synthesis of high-purity aluminum alkoxide was further investigated. Moreover, the changes in morphology and pore size distribution of hydrolyzed alumina precursor materials under different hydrothermal temperature conditions were discussed by means of the alkoxide hydrolysis-sol-gel process. Eventually, the aluminum alkoxide was obtained by the reaction of waste cans with isopropanol and heavy crystal thermal conductivity, and the high-purity aluminum alkoxide was purified by vacuum distillation. Under the hydrothermal condition of 160°C, the high-purity alumina material with a purity of 99.99% and an original crystal size of 200nm was prepared.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Preparation Technology and Heat Conduction Mechanism of High-Purity & Ultra-Fine Alumina Powder from Scrap Aluminum Cans\",\"authors\":\"Chengmin Wang, Anatoly Politov, Xiuhui Wang, Jinlong Yang\",\"doi\":\"10.24425/afe.2024.149264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the increasing scarcity of bauxite resources in China, the high energy consumption and high pollution of electrolytic aluminum, and the requirements for energy conservation and environmental protection, aluminum recycling and high-value utilization of its derivatives have evolved into a crucial development requirement for the aluminum industry in the future. As an important part of the development of recycled aluminum resources, the high-value application of scrap aluminum cans has always been a hot research topic in various recycled aluminum processing enterprises and scientific research units. The traditional regeneration system of waste cans includes a series of complex technological processes such as pretreatment, paint removal, smelting system and casting system, which is difficult to control in the middle of the process. Most of the recycled scrap aluminum cans are cast and downgraded for later use, except for a part of them used as alloy materials for new cans. In this paper, combined with the research on the preparation of metal aluminum alkoxide, combined with recrystallization heat conduction to further study the effective dissolution or adsorption how to remove impurity elements to obtain high-purity aluminum alcohol salt mechanism research, and thermal effect of alcohols with different carbon chains on the synthesis of high-purity aluminum alkoxide was further investigated. Moreover, the changes in morphology and pore size distribution of hydrolyzed alumina precursor materials under different hydrothermal temperature conditions were discussed by means of the alkoxide hydrolysis-sol-gel process. Eventually, the aluminum alkoxide was obtained by the reaction of waste cans with isopropanol and heavy crystal thermal conductivity, and the high-purity aluminum alkoxide was purified by vacuum distillation. Under the hydrothermal condition of 160°C, the high-purity alumina material with a purity of 99.99% and an original crystal size of 200nm was prepared.\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2024.149264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2024.149264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

鉴于中国铝土矿资源的日益匮乏,电解铝的高能耗、高污染,以及节能环保的要求,铝的回收及其衍生品的高值化利用已演变成未来铝工业的重要发展要求。作为再生铝资源开发的重要组成部分,废铝罐的高值化应用一直是各再生铝加工企业和科研单位的研究热点。传统的废易拉罐再生系统包括预处理、除漆、熔炼系统、浇铸系统等一系列复杂的工艺流程,中间过程难以控制。回收的废铝罐除一部分用作新罐的合金材料外,大部分被铸造降级后使用。本文结合金属铝氧化物的制备研究,结合重结晶热传导进一步研究了如何有效溶解或吸附去除杂质元素获得高纯度铝醇盐的机理研究,并进一步研究了不同碳链的醇对合成高纯度铝氧化物的热效应。此外,还通过氧化铝水解-溶胶-凝胶过程,探讨了水解氧化铝前驱体材料在不同水热温度条件下的形貌和孔径分布变化。最终,通过废易拉罐与异丙醇和重晶导热反应得到氧化铝,并通过真空蒸馏提纯出高纯度的氧化铝。在 160°C 水热条件下,制备出纯度为 99.99%、原始晶体尺寸为 200nm 的高纯氧化铝材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Preparation Technology and Heat Conduction Mechanism of High-Purity & Ultra-Fine Alumina Powder from Scrap Aluminum Cans
In view of the increasing scarcity of bauxite resources in China, the high energy consumption and high pollution of electrolytic aluminum, and the requirements for energy conservation and environmental protection, aluminum recycling and high-value utilization of its derivatives have evolved into a crucial development requirement for the aluminum industry in the future. As an important part of the development of recycled aluminum resources, the high-value application of scrap aluminum cans has always been a hot research topic in various recycled aluminum processing enterprises and scientific research units. The traditional regeneration system of waste cans includes a series of complex technological processes such as pretreatment, paint removal, smelting system and casting system, which is difficult to control in the middle of the process. Most of the recycled scrap aluminum cans are cast and downgraded for later use, except for a part of them used as alloy materials for new cans. In this paper, combined with the research on the preparation of metal aluminum alkoxide, combined with recrystallization heat conduction to further study the effective dissolution or adsorption how to remove impurity elements to obtain high-purity aluminum alcohol salt mechanism research, and thermal effect of alcohols with different carbon chains on the synthesis of high-purity aluminum alkoxide was further investigated. Moreover, the changes in morphology and pore size distribution of hydrolyzed alumina precursor materials under different hydrothermal temperature conditions were discussed by means of the alkoxide hydrolysis-sol-gel process. Eventually, the aluminum alkoxide was obtained by the reaction of waste cans with isopropanol and heavy crystal thermal conductivity, and the high-purity aluminum alkoxide was purified by vacuum distillation. Under the hydrothermal condition of 160°C, the high-purity alumina material with a purity of 99.99% and an original crystal size of 200nm was prepared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
期刊最新文献
Casting Production in Poland Versus European Trends in 21st Century Effect of Composition and Pouring Temperature of Cu-Sn on Fluidity and Mechanical Properties of Investment Casting Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application Abrasive Wear Resistance of Nodular Cast Iron After Selected Surface Heat and Thermochemical Treatment Processes Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1