减少化工生产温室气体排放的不确定性

Luke Cullen, Fanran Meng, Rick Lupton, Jonathan M. Cullen
{"title":"减少化工生产温室气体排放的不确定性","authors":"Luke Cullen, Fanran Meng, Rick Lupton, Jonathan M. Cullen","doi":"10.1038/s44286-024-00047-z","DOIUrl":null,"url":null,"abstract":"Uncertainties in greenhouse gas emissions estimates for petrochemical production have lacked quantification globally, impacting emissions reporting and decarbonization policymaking. Here we analyze cradle-to-gate emissions of 81 chemicals at 37,000 facilities worldwide, assessing 6 uncertainty sources. The results estimate a 34% uncertainty in total global emissions of 1.9 ± 0.6 Gt of CO2-equivalent emissions for 2020, and 15–40% uncertainties across most petrochemicals analyzed. The largest uncertainties stem from the inability to assign specific production processes to facilities owing to data limitations. Uncertain data on feedstock production and off-site energy generation contribute substantially, while on-site fuel combustion and chemical reactions have smaller roles. Allocation method choices for co-products are generally insignificant. Prioritizing facility-level process specification in data collection for just 20% of facilities could reduce global uncertainty by 80%. This underscores the necessity of quantifying uncertainty in petrochemical greenhouse gas emissions globally and outlines priorities for improved reporting. The dataset generated offers independent emissions factor estimates based on facility-specific information for 81 chemicals, supporting future analyses. Robust decarbonization strategies for the petrochemical industry are hampered by many sources of uncertainty in greenhouse gas emissions estimates. Here the authors quantify and prioritize uncertainty sources, finding that the most significant factor is the lack of detailed data about specific production processes used in chemical facilities.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 4","pages":"311-322"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00047-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Reducing uncertainties in greenhouse gas emissions from chemical production\",\"authors\":\"Luke Cullen, Fanran Meng, Rick Lupton, Jonathan M. Cullen\",\"doi\":\"10.1038/s44286-024-00047-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainties in greenhouse gas emissions estimates for petrochemical production have lacked quantification globally, impacting emissions reporting and decarbonization policymaking. Here we analyze cradle-to-gate emissions of 81 chemicals at 37,000 facilities worldwide, assessing 6 uncertainty sources. The results estimate a 34% uncertainty in total global emissions of 1.9 ± 0.6 Gt of CO2-equivalent emissions for 2020, and 15–40% uncertainties across most petrochemicals analyzed. The largest uncertainties stem from the inability to assign specific production processes to facilities owing to data limitations. Uncertain data on feedstock production and off-site energy generation contribute substantially, while on-site fuel combustion and chemical reactions have smaller roles. Allocation method choices for co-products are generally insignificant. Prioritizing facility-level process specification in data collection for just 20% of facilities could reduce global uncertainty by 80%. This underscores the necessity of quantifying uncertainty in petrochemical greenhouse gas emissions globally and outlines priorities for improved reporting. The dataset generated offers independent emissions factor estimates based on facility-specific information for 81 chemicals, supporting future analyses. Robust decarbonization strategies for the petrochemical industry are hampered by many sources of uncertainty in greenhouse gas emissions estimates. Here the authors quantify and prioritize uncertainty sources, finding that the most significant factor is the lack of detailed data about specific production processes used in chemical facilities.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 4\",\"pages\":\"311-322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44286-024-00047-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00047-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00047-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,石油化工生产的温室气体排放量估算的不确定性一直缺乏量化,影响了排放量报告和去碳化政策的制定。在此,我们分析了全球 37,000 家工厂的 81 种化学品从摇篮到入口的排放量,评估了 6 种不确定性来源。结果估计,2020 年全球总排放量的不确定性为 34%,即 1.9 ± 0.6 千兆吨二氧化碳当量的排放量,而所分析的大多数石化产品的不确定性为 15-40%。最大的不确定性来自于由于数据限制而无法将具体生产工艺分配给设施。原料生产和场外能源生产数据的不确定性造成了很大影响,而现场燃料燃烧和化学反应的影响较小。对副产品的分配方法选择一般不重要。在数据收集中优先考虑 20% 的设施级工艺规范,可将全球不确定性降低 80%。这强调了量化全球石化温室气体排放不确定性的必要性,并概述了改进报告的优先事项。所生成的数据集基于 81 种化学品的特定设施信息,提供了独立的排放因子估算,为未来的分析提供了支持。由于温室气体排放估算中存在许多不确定因素,因此石化行业强有力的去碳化战略受到了阻碍。在此,作者对不确定性来源进行了量化和优先排序,发现最重要的因素是缺乏有关化工设施所用具体生产工艺的详细数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing uncertainties in greenhouse gas emissions from chemical production
Uncertainties in greenhouse gas emissions estimates for petrochemical production have lacked quantification globally, impacting emissions reporting and decarbonization policymaking. Here we analyze cradle-to-gate emissions of 81 chemicals at 37,000 facilities worldwide, assessing 6 uncertainty sources. The results estimate a 34% uncertainty in total global emissions of 1.9 ± 0.6 Gt of CO2-equivalent emissions for 2020, and 15–40% uncertainties across most petrochemicals analyzed. The largest uncertainties stem from the inability to assign specific production processes to facilities owing to data limitations. Uncertain data on feedstock production and off-site energy generation contribute substantially, while on-site fuel combustion and chemical reactions have smaller roles. Allocation method choices for co-products are generally insignificant. Prioritizing facility-level process specification in data collection for just 20% of facilities could reduce global uncertainty by 80%. This underscores the necessity of quantifying uncertainty in petrochemical greenhouse gas emissions globally and outlines priorities for improved reporting. The dataset generated offers independent emissions factor estimates based on facility-specific information for 81 chemicals, supporting future analyses. Robust decarbonization strategies for the petrochemical industry are hampered by many sources of uncertainty in greenhouse gas emissions estimates. Here the authors quantify and prioritize uncertainty sources, finding that the most significant factor is the lack of detailed data about specific production processes used in chemical facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodegrading living plastics Reducing desalination energy consumption Recycle, reduce, reform and close the loop Queue in the surfactant molecules Encouraging activity in molecular thermodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1