用于口服抗癌药物递送的交联明胶-沸石 Y 混合物释放泽润邦的动力学和机理

Norashikin Salleh, Mohd Muzamir Mahat, Sabrina M. Yahaya, Rosmamuhamadani Ramli
{"title":"用于口服抗癌药物递送的交联明胶-沸石 Y 混合物释放泽润邦的动力学和机理","authors":"Norashikin Salleh, Mohd Muzamir Mahat, Sabrina M. Yahaya, Rosmamuhamadani Ramli","doi":"10.37934/arfmts.115.1.181192","DOIUrl":null,"url":null,"abstract":"A hybrid of zeolite Y-gelatin film as an oral dosage form for the natural anticancer drug was achieved by homogenously incorporating the drug-loaded zeolite Y into the gelatin solution. Drug ability was analyzed using computational and experimental approaches, drug encapsulation efficiency via the BET method, and possible interactions by FTIR analyses. Zerumbone released was done in both pH 1.2 and pH 7.4 mimicking the human gastrointestinal tract conditions for 24 hrs and subjected to kinetics study via suitable mathematical models to determine what governs the drug release with the results indicating that a sustained delivery of once-daily oral dosage form could be achieved.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":" 966","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic and Mechanism of Zerumbone Release from Cross-linked Gelatin-Zeolite Y Hybrid for Oral Anticancer Drug Delivery\",\"authors\":\"Norashikin Salleh, Mohd Muzamir Mahat, Sabrina M. Yahaya, Rosmamuhamadani Ramli\",\"doi\":\"10.37934/arfmts.115.1.181192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid of zeolite Y-gelatin film as an oral dosage form for the natural anticancer drug was achieved by homogenously incorporating the drug-loaded zeolite Y into the gelatin solution. Drug ability was analyzed using computational and experimental approaches, drug encapsulation efficiency via the BET method, and possible interactions by FTIR analyses. Zerumbone released was done in both pH 1.2 and pH 7.4 mimicking the human gastrointestinal tract conditions for 24 hrs and subjected to kinetics study via suitable mathematical models to determine what governs the drug release with the results indicating that a sustained delivery of once-daily oral dosage form could be achieved.\",\"PeriodicalId\":37460,\"journal\":{\"name\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"volume\":\" 966\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arfmts.115.1.181192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.115.1.181192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通过在明胶溶液中均匀加入载药沸石 Y,实现了天然抗癌药物的口服剂型--沸石 Y-明胶混合膜。利用计算和实验方法分析了药物的能力,通过 BET 方法分析了药物的包封效率,并通过傅立叶变换红外光谱分析了可能的相互作用。在模拟人体胃肠道条件的 pH 值为 1.2 和 pH 值为 7.4 的条件下释放了 24 小时的泽润邦,并通过合适的数学模型进行了动力学研究,以确定药物释放的主导因素,结果表明可以实现每日一次口服剂型的持续给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetic and Mechanism of Zerumbone Release from Cross-linked Gelatin-Zeolite Y Hybrid for Oral Anticancer Drug Delivery
A hybrid of zeolite Y-gelatin film as an oral dosage form for the natural anticancer drug was achieved by homogenously incorporating the drug-loaded zeolite Y into the gelatin solution. Drug ability was analyzed using computational and experimental approaches, drug encapsulation efficiency via the BET method, and possible interactions by FTIR analyses. Zerumbone released was done in both pH 1.2 and pH 7.4 mimicking the human gastrointestinal tract conditions for 24 hrs and subjected to kinetics study via suitable mathematical models to determine what governs the drug release with the results indicating that a sustained delivery of once-daily oral dosage form could be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Synchronous Heat and Mass Transmission in MHD Ohmic Dissipative Viscous Fluid Flow Cavorted by an Upright Surface with Chemical Reaction Energy and Exergy Analysis of R600a as a Substitute for R134a in Automotive Air Conditioning System Exploration of Timber Dry and Wet Rot Defects in Buildings: Types, Causes, Effects and Mitigation Methods Investigating the Effects of Air Bubbles Injection Technique on the Cooling Time of Warm Drinking Water Preparation of TFC-PES Reverse Osmosis Hollow Fibre Membrane for Brackish Water Desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1