为多项式数据提出一种新的过度分散估计器

Farzana Afroz
{"title":"为多项式数据提出一种新的过度分散估计器","authors":"Farzana Afroz","doi":"10.3329/dujs.v72i1.71247","DOIUrl":null,"url":null,"abstract":"The classical approach of estimating overdispersion parameter, Φ, by Pearson's goodness of fit statistic is not appropriate when the data are sparse. We have considered several estimators of Φ, derived from the Pearson's statistic and the deviance statistic for multinomial data. The proposed estimator of Φ depending on the deviance statistic is shown to perform the best for increasing level of sparsity and overdispersion, regarding the root mean squared error. As a practical example dead recovery data collected on Herring gulls from Kent Island, Canada are considered. A parametric extra variation model finite mixture distribution is used in the simulation study.\nDhaka Univ. J. Sci. 72(1): 56-62, 2024 (January)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":" March","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposing a New Estimator of Overdispersion for Multinomial Data\",\"authors\":\"Farzana Afroz\",\"doi\":\"10.3329/dujs.v72i1.71247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical approach of estimating overdispersion parameter, Φ, by Pearson's goodness of fit statistic is not appropriate when the data are sparse. We have considered several estimators of Φ, derived from the Pearson's statistic and the deviance statistic for multinomial data. The proposed estimator of Φ depending on the deviance statistic is shown to perform the best for increasing level of sparsity and overdispersion, regarding the root mean squared error. As a practical example dead recovery data collected on Herring gulls from Kent Island, Canada are considered. A parametric extra variation model finite mixture distribution is used in the simulation study.\\nDhaka Univ. J. Sci. 72(1): 56-62, 2024 (January)\",\"PeriodicalId\":11280,\"journal\":{\"name\":\"Dhaka University Journal of Science\",\"volume\":\" March\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dhaka University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/dujs.v72i1.71247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v72i1.71247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当数据稀疏时,通过皮尔逊拟合优度统计来估计超离散参数 Φ 的经典方法并不合适。我们考虑了几种从皮尔逊统计量和多项式数据偏差统计量推导出的 Φ 估计器。结果表明,在均方根误差方面,根据偏差统计量提出的 Φ 估计器在稀疏度和超分散度不断增加的情况下表现最佳。以加拿大肯特岛收集的鲱鸥死亡恢复数据为例进行说明。模拟研究中使用了参数额外变化模型有限混合分布:56-62, 2024 (January)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposing a New Estimator of Overdispersion for Multinomial Data
The classical approach of estimating overdispersion parameter, Φ, by Pearson's goodness of fit statistic is not appropriate when the data are sparse. We have considered several estimators of Φ, derived from the Pearson's statistic and the deviance statistic for multinomial data. The proposed estimator of Φ depending on the deviance statistic is shown to perform the best for increasing level of sparsity and overdispersion, regarding the root mean squared error. As a practical example dead recovery data collected on Herring gulls from Kent Island, Canada are considered. A parametric extra variation model finite mixture distribution is used in the simulation study. Dhaka Univ. J. Sci. 72(1): 56-62, 2024 (January)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covid-19 Pandemic and Pre-pandemic Economic Shocks to Brazil, India, and Mexico: A Forecast Comparison Evaluating the Impact and Recovery New Traveling Wave Solutions to the Simplified Modified Camassa–Holm Equation and the Landau-Ginsburg-Higgs Equation Phytochemical Investigation and Biological Studies of Coffea benghalensis B. Heyne Ex Schult Synthesis and Characterization of Vanadium Doped Hexagonal Rubidium Tungsten Bronze Preparation and Characterization of Porous Carbon Material from Banana Pseudo-Stem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1