{"title":"加权压缩传感应用于地震干涉测量:利用先验信息重建波场","authors":"P. Saengduean, Roel Snieder, M. Wakin","doi":"10.1785/0220230066","DOIUrl":null,"url":null,"abstract":"\n Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The technique requires much storage for long noise records to suppress interferometric noise, which consists of spurious arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be available in practice. Compressive sensing (CS), which is a wavefield reconstruction technique operating on incomplete data, may increase the availability, and reduce storage limitations of long noise time series. Using a numerical example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the storage required for interferometry. We propose and develop a weighted CS algorithm that helps suppress the spurious arrivals by incorporating a priori information about the arrivals of surface waves that can be expected.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Compressive Sensing Applied to Seismic Interferometry: Wavefield Reconstruction Using Prior Information\",\"authors\":\"P. Saengduean, Roel Snieder, M. Wakin\",\"doi\":\"10.1785/0220230066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The technique requires much storage for long noise records to suppress interferometric noise, which consists of spurious arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be available in practice. Compressive sensing (CS), which is a wavefield reconstruction technique operating on incomplete data, may increase the availability, and reduce storage limitations of long noise time series. Using a numerical example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the storage required for interferometry. We propose and develop a weighted CS algorithm that helps suppress the spurious arrivals by incorporating a priori information about the arrivals of surface waves that can be expected.\",\"PeriodicalId\":508466,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted Compressive Sensing Applied to Seismic Interferometry: Wavefield Reconstruction Using Prior Information
Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The technique requires much storage for long noise records to suppress interferometric noise, which consists of spurious arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be available in practice. Compressive sensing (CS), which is a wavefield reconstruction technique operating on incomplete data, may increase the availability, and reduce storage limitations of long noise time series. Using a numerical example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the storage required for interferometry. We propose and develop a weighted CS algorithm that helps suppress the spurious arrivals by incorporating a priori information about the arrivals of surface waves that can be expected.