带读出电路的基于 MEMS 的面积变化电容式加速度计的设计与性能分析

Mahua Raha Patra, Kalyan Biswas
{"title":"带读出电路的基于 MEMS 的面积变化电容式加速度计的设计与性能分析","authors":"Mahua Raha Patra, Kalyan Biswas","doi":"10.29292/jics.v19i1.749","DOIUrl":null,"url":null,"abstract":"The structural optimization of the device is used in the present work to demonstrate the improvement of the device sensitivity for a MEMS accelerometer based on capacitive principle due to overlap area change between electrodes. The proof mass of the device is made up of a few parallel fingers those are joined together. Proof mass is supported by flexible mechanical beams that resemble springs is suspended over fixed electrodes and are fastened to the substrate. The greatest displacement that the proof mass can suffer with application of acceleration is determined for the specific construction. The connected beams' width and length were changed, and ANSYS FEA software was used to model the reaction.  Sensitivity of the device is analyzed and discussed based on the findings of various device geometry measurements, and suggestions for improving sensitivity are also made. Additionally, a signal conditioning circuit that changes the capacitance to voltage as a result of the proof mass deflecting differently is described. These discoveries might help designers to create capacitive MEMS accelerometers with increased sensitivity.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance analysis of a MEMS Based Area-Variation Capacitive Accelerometer with Readout Circuit\",\"authors\":\"Mahua Raha Patra, Kalyan Biswas\",\"doi\":\"10.29292/jics.v19i1.749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural optimization of the device is used in the present work to demonstrate the improvement of the device sensitivity for a MEMS accelerometer based on capacitive principle due to overlap area change between electrodes. The proof mass of the device is made up of a few parallel fingers those are joined together. Proof mass is supported by flexible mechanical beams that resemble springs is suspended over fixed electrodes and are fastened to the substrate. The greatest displacement that the proof mass can suffer with application of acceleration is determined for the specific construction. The connected beams' width and length were changed, and ANSYS FEA software was used to model the reaction.  Sensitivity of the device is analyzed and discussed based on the findings of various device geometry measurements, and suggestions for improving sensitivity are also made. Additionally, a signal conditioning circuit that changes the capacitance to voltage as a result of the proof mass deflecting differently is described. These discoveries might help designers to create capacitive MEMS accelerometers with increased sensitivity.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v19i1.749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v19i1.749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,通过对设备结构的优化,证明了基于电容原理的 MEMS 加速计由于电极间重叠面积的变化而提高了设备灵敏度。该装置的验证质量由几个平行的手指连接而成。试样质量由类似弹簧的柔性机械梁支撑,悬挂在固定电极上,并固定在基板上。根据具体的结构,确定了在施加加速度时验证质量所能承受的最大位移。改变连接梁的宽度和长度,并使用 ANSYS FEA 软件建立反应模型。 根据各种装置几何测量的结果,对装置的灵敏度进行了分析和讨论,并提出了提高灵敏度的建议。此外,还介绍了一种信号调节电路,该电路可将电容转换为电压,因为验证质量会发生不同程度的偏转。这些发现可能有助于设计人员设计出灵敏度更高的电容式 MEMS 加速计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and performance analysis of a MEMS Based Area-Variation Capacitive Accelerometer with Readout Circuit
The structural optimization of the device is used in the present work to demonstrate the improvement of the device sensitivity for a MEMS accelerometer based on capacitive principle due to overlap area change between electrodes. The proof mass of the device is made up of a few parallel fingers those are joined together. Proof mass is supported by flexible mechanical beams that resemble springs is suspended over fixed electrodes and are fastened to the substrate. The greatest displacement that the proof mass can suffer with application of acceleration is determined for the specific construction. The connected beams' width and length were changed, and ANSYS FEA software was used to model the reaction.  Sensitivity of the device is analyzed and discussed based on the findings of various device geometry measurements, and suggestions for improving sensitivity are also made. Additionally, a signal conditioning circuit that changes the capacitance to voltage as a result of the proof mass deflecting differently is described. These discoveries might help designers to create capacitive MEMS accelerometers with increased sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1