采用可变本体偏置以减少阈值下漏电的 500 MS/s 高速 16 位 SAR-ADC 设计

Tejender Singh, S. Tripathi, Vikram Kumar
{"title":"采用可变本体偏置以减少阈值下漏电的 500 MS/s 高速 16 位 SAR-ADC 设计","authors":"Tejender Singh, S. Tripathi, Vikram Kumar","doi":"10.29292/jics.v19i1.780","DOIUrl":null,"url":null,"abstract":"In this study, a high-performance 16-bit, 500 MS/s successive approximation register analog-to-digital con-verter (SAR-ADC) with variable body biasing (VBB) for re-ducing sub-threshold leakage is designed and optimized. The suggested ADC architecture makes use of a voltage threshold complementary metal-oxide-semiconductor (VTCMOS) cir-cuit with Widlar current mirror technology to efficiently con-sume 39.2 μW at an operating voltage of 1.0 V. Notably, the optimized ADC achieves outstanding performance measures, such as a signal-to-noise and distortion ratio (SNDR) of 97 dB and a total harmonic distortion (THD) of -97.97 dB, which are crucial markers of the ADC's accuracy and fidelity. An over-view of the growing need for high-resolution ADCs in contem-porary high-speed data conversion systems opens the study. The main goal of this effort is to improve overall ADC per-formance and tackle the problem of sub-threshold leakage. The Widlar current mirror technology and the VTCMOS cir-cuit are integrated for enhanced linearity, decreased current mismatch errors, and minimized leakage current. This inte-gration is highlighted in the full explanation of the ADC de-sign. The advent of the VBB approach as a successful method of leakage reduction is a significant contribution to this re-search. The theoretical foundations and workings of the VBB technique are discussed, and thorough simulations and tests are used to assess how the VBB technique affects leakage cur-rent and circuit performance. The SAR-ADC design and simulations were carried out using Cadence Virtuoso soft-ware.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Speed 16-Bit SAR-ADC Design at 500 MS/s with Variable Body Biasing for Sub-Threshold Leakage Reduction\",\"authors\":\"Tejender Singh, S. Tripathi, Vikram Kumar\",\"doi\":\"10.29292/jics.v19i1.780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a high-performance 16-bit, 500 MS/s successive approximation register analog-to-digital con-verter (SAR-ADC) with variable body biasing (VBB) for re-ducing sub-threshold leakage is designed and optimized. The suggested ADC architecture makes use of a voltage threshold complementary metal-oxide-semiconductor (VTCMOS) cir-cuit with Widlar current mirror technology to efficiently con-sume 39.2 μW at an operating voltage of 1.0 V. Notably, the optimized ADC achieves outstanding performance measures, such as a signal-to-noise and distortion ratio (SNDR) of 97 dB and a total harmonic distortion (THD) of -97.97 dB, which are crucial markers of the ADC's accuracy and fidelity. An over-view of the growing need for high-resolution ADCs in contem-porary high-speed data conversion systems opens the study. The main goal of this effort is to improve overall ADC per-formance and tackle the problem of sub-threshold leakage. The Widlar current mirror technology and the VTCMOS cir-cuit are integrated for enhanced linearity, decreased current mismatch errors, and minimized leakage current. This inte-gration is highlighted in the full explanation of the ADC de-sign. The advent of the VBB approach as a successful method of leakage reduction is a significant contribution to this re-search. The theoretical foundations and workings of the VBB technique are discussed, and thorough simulations and tests are used to assess how the VBB technique affects leakage cur-rent and circuit performance. The SAR-ADC design and simulations were carried out using Cadence Virtuoso soft-ware.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v19i1.780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v19i1.780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究设计并优化了一款高性能 16 位、500 MS/s 逐次逼近寄存器模数转换器 (SAR-ADC),它采用可变体偏压 (VBB),可减少阈值下漏电。所建议的模数转换器架构利用了采用 Widlar 电流镜技术的电压阈值互补金属氧化物半导体 (VTCMOS) 电路,在 1.0 V 工作电压下可有效消耗 39.2 μW 的功率。值得注意的是,优化后的 ADC 实现了出色的性能指标,如 97 dB 的信噪比和失真比 (SNDR),以及 -97.97 dB 的总谐波失真 (THD),这是 ADC 精度和保真度的重要标志。研究报告开篇概述了当代高速数据转换系统对高分辨率 ADC 日益增长的需求。这项工作的主要目标是提高模数转换器的整体性能,并解决阈值下漏电问题。Widlar 电流镜技术与 VTCMOS 电路集成在一起,从而提高了线性度,减少了电流失配误差,并最大限度地降低了漏电流。在 ADC 去符号化的完整解释中强调了这种集成。VBB 方法作为一种成功的降低漏电流方法的出现,是对这一研究的重大贡献。本文讨论了 VBB 技术的理论基础和工作原理,并通过全面的模拟和测试来评估 VBB 技术如何影响漏电流和电路性能。SAR-ADC 的设计和仿真是使用 Cadence Virtuoso 软件进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Speed 16-Bit SAR-ADC Design at 500 MS/s with Variable Body Biasing for Sub-Threshold Leakage Reduction
In this study, a high-performance 16-bit, 500 MS/s successive approximation register analog-to-digital con-verter (SAR-ADC) with variable body biasing (VBB) for re-ducing sub-threshold leakage is designed and optimized. The suggested ADC architecture makes use of a voltage threshold complementary metal-oxide-semiconductor (VTCMOS) cir-cuit with Widlar current mirror technology to efficiently con-sume 39.2 μW at an operating voltage of 1.0 V. Notably, the optimized ADC achieves outstanding performance measures, such as a signal-to-noise and distortion ratio (SNDR) of 97 dB and a total harmonic distortion (THD) of -97.97 dB, which are crucial markers of the ADC's accuracy and fidelity. An over-view of the growing need for high-resolution ADCs in contem-porary high-speed data conversion systems opens the study. The main goal of this effort is to improve overall ADC per-formance and tackle the problem of sub-threshold leakage. The Widlar current mirror technology and the VTCMOS cir-cuit are integrated for enhanced linearity, decreased current mismatch errors, and minimized leakage current. This inte-gration is highlighted in the full explanation of the ADC de-sign. The advent of the VBB approach as a successful method of leakage reduction is a significant contribution to this re-search. The theoretical foundations and workings of the VBB technique are discussed, and thorough simulations and tests are used to assess how the VBB technique affects leakage cur-rent and circuit performance. The SAR-ADC design and simulations were carried out using Cadence Virtuoso soft-ware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1