MineXR:挖掘个性化扩展现实界面

ArXiv Pub Date : 2024-03-12 DOI:10.1145/3613904.3642394
Hyunsung Cho, Yukang Yan, Kashyap Todi, Mark Parent, Missie Smith, Tanya R. Jonker, Hrvoje Benko, David Lindlbauer
{"title":"MineXR:挖掘个性化扩展现实界面","authors":"Hyunsung Cho, Yukang Yan, Kashyap Todi, Mark Parent, Missie Smith, Tanya R. Jonker, Hrvoje Benko, David Lindlbauer","doi":"10.1145/3613904.3642394","DOIUrl":null,"url":null,"abstract":"Extended Reality (XR) interfaces offer engaging user experiences, but their effective design requires a nuanced understanding of user behavior and preferences. This knowledge is challenging to obtain without the widespread adoption of XR devices. We introduce MineXR, a design mining workflow and data analysis platform for collecting and analyzing personalized XR user interaction and experience data. MineXR enables elicitation of personalized interfaces from participants of a data collection: for any particular context, participants create interface elements using application screenshots from their own smartphone, place them in the environment, and simultaneously preview the resulting XR layout on a headset. Using MineXR, we contribute a dataset of personalized XR interfaces collected from 31 participants, consisting of 695 XR widgets created from 178 unique applications. We provide insights for XR widget functionalities, categories, clusters, UI element types, and placement. Our open-source tools and data support researchers and designers in developing future XR interfaces.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MineXR: Mining Personalized Extended Reality Interfaces\",\"authors\":\"Hyunsung Cho, Yukang Yan, Kashyap Todi, Mark Parent, Missie Smith, Tanya R. Jonker, Hrvoje Benko, David Lindlbauer\",\"doi\":\"10.1145/3613904.3642394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Reality (XR) interfaces offer engaging user experiences, but their effective design requires a nuanced understanding of user behavior and preferences. This knowledge is challenging to obtain without the widespread adoption of XR devices. We introduce MineXR, a design mining workflow and data analysis platform for collecting and analyzing personalized XR user interaction and experience data. MineXR enables elicitation of personalized interfaces from participants of a data collection: for any particular context, participants create interface elements using application screenshots from their own smartphone, place them in the environment, and simultaneously preview the resulting XR layout on a headset. Using MineXR, we contribute a dataset of personalized XR interfaces collected from 31 participants, consisting of 695 XR widgets created from 178 unique applications. We provide insights for XR widget functionalities, categories, clusters, UI element types, and placement. Our open-source tools and data support researchers and designers in developing future XR interfaces.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3613904.3642394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩展现实(XR)界面提供了引人入胜的用户体验,但其有效设计需要对用户行为和偏好有细致入微的了解。在 XR 设备没有得到广泛应用的情况下,要获得这方面的知识具有挑战性。我们介绍的 MineXR 是一种设计挖掘工作流程和数据分析平台,用于收集和分析个性化 XR 用户交互和体验数据。MineXR 能够从数据收集的参与者那里激发个性化界面:对于任何特定情境,参与者都可以使用自己智能手机上的应用截图创建界面元素,将其放置在环境中,并同时在耳机上预览由此产生的 XR 布局。利用 MineXR,我们收集了 31 位参与者的个性化 XR 界面数据集,其中包括从 178 个独特应用中创建的 695 个 XR 部件。我们对 XR 小工具的功能、类别、集群、用户界面元素类型和位置进行了深入分析。我们的开源工具和数据可为研究人员和设计人员开发未来的 XR 界面提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MineXR: Mining Personalized Extended Reality Interfaces
Extended Reality (XR) interfaces offer engaging user experiences, but their effective design requires a nuanced understanding of user behavior and preferences. This knowledge is challenging to obtain without the widespread adoption of XR devices. We introduce MineXR, a design mining workflow and data analysis platform for collecting and analyzing personalized XR user interaction and experience data. MineXR enables elicitation of personalized interfaces from participants of a data collection: for any particular context, participants create interface elements using application screenshots from their own smartphone, place them in the environment, and simultaneously preview the resulting XR layout on a headset. Using MineXR, we contribute a dataset of personalized XR interfaces collected from 31 participants, consisting of 695 XR widgets created from 178 unique applications. We provide insights for XR widget functionalities, categories, clusters, UI element types, and placement. Our open-source tools and data support researchers and designers in developing future XR interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1