{"title":"微生物生物技术:应对气候变化和粮食不安全的关键工具","authors":"H. Malkawi, Tarek Yehia Soliman Kapiel","doi":"10.24018/ejbio.2024.5.2.503","DOIUrl":null,"url":null,"abstract":"Amidst escalating climate change and food insecurity concerns, exploring the potential of microbes offers a promising and sustainable solution. This review delves into the complex interplay between microbial communities and the dual challenge of environmental crisis and food security. \nUbiquitous microorganisms – from bacteria to fungi and archaea – shape our planet's ecosystems, playing a crucial role in soil health, nutrient cycling, and plant-microbe interactions. This review dissects diverse microbial habitats, highlighting their remarkable adaptability to varied environments. \nIt then underscores the reciprocal impacts of human-induced environmental changes on microbes and their habitats. Addressing these challenges, the review presents microbes as powerful allies in mitigating climate change. Their ability to sequester carbon, reduce greenhouse gas emissions, and enhance soil fertility is explored. Innovations like biofertilizers and biopesticides demonstrate the potential of microbial technologies to revolutionize agriculture and ensure global food security. \nConcluding, the review emphasizes the symbiotic link between microbes and sustainable food production. Microbial technologies can adapt agriculture to changing climate conditions, addressing water scarcity and enhancing soil moisture retention. Their potential to boost productivity in both traditional and precision agriculture under diverse climatic conditions is highlighted. \nThis review calls for the urgent recognition and harnessing of microbial power for a sustainable future. Embracing microbial technologies not only fosters environmental stewardship but also paves the way for a resilient and resource-efficient agricultural future.","PeriodicalId":72969,"journal":{"name":"European journal of biology and biotechnology","volume":"95 1s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Biotechnology: A Key Tool for Addressing Climate Change and Food Insecurity\",\"authors\":\"H. Malkawi, Tarek Yehia Soliman Kapiel\",\"doi\":\"10.24018/ejbio.2024.5.2.503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amidst escalating climate change and food insecurity concerns, exploring the potential of microbes offers a promising and sustainable solution. This review delves into the complex interplay between microbial communities and the dual challenge of environmental crisis and food security. \\nUbiquitous microorganisms – from bacteria to fungi and archaea – shape our planet's ecosystems, playing a crucial role in soil health, nutrient cycling, and plant-microbe interactions. This review dissects diverse microbial habitats, highlighting their remarkable adaptability to varied environments. \\nIt then underscores the reciprocal impacts of human-induced environmental changes on microbes and their habitats. Addressing these challenges, the review presents microbes as powerful allies in mitigating climate change. Their ability to sequester carbon, reduce greenhouse gas emissions, and enhance soil fertility is explored. Innovations like biofertilizers and biopesticides demonstrate the potential of microbial technologies to revolutionize agriculture and ensure global food security. \\nConcluding, the review emphasizes the symbiotic link between microbes and sustainable food production. Microbial technologies can adapt agriculture to changing climate conditions, addressing water scarcity and enhancing soil moisture retention. Their potential to boost productivity in both traditional and precision agriculture under diverse climatic conditions is highlighted. \\nThis review calls for the urgent recognition and harnessing of microbial power for a sustainable future. Embracing microbial technologies not only fosters environmental stewardship but also paves the way for a resilient and resource-efficient agricultural future.\",\"PeriodicalId\":72969,\"journal\":{\"name\":\"European journal of biology and biotechnology\",\"volume\":\"95 1s1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of biology and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejbio.2024.5.2.503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biology and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejbio.2024.5.2.503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial Biotechnology: A Key Tool for Addressing Climate Change and Food Insecurity
Amidst escalating climate change and food insecurity concerns, exploring the potential of microbes offers a promising and sustainable solution. This review delves into the complex interplay between microbial communities and the dual challenge of environmental crisis and food security.
Ubiquitous microorganisms – from bacteria to fungi and archaea – shape our planet's ecosystems, playing a crucial role in soil health, nutrient cycling, and plant-microbe interactions. This review dissects diverse microbial habitats, highlighting their remarkable adaptability to varied environments.
It then underscores the reciprocal impacts of human-induced environmental changes on microbes and their habitats. Addressing these challenges, the review presents microbes as powerful allies in mitigating climate change. Their ability to sequester carbon, reduce greenhouse gas emissions, and enhance soil fertility is explored. Innovations like biofertilizers and biopesticides demonstrate the potential of microbial technologies to revolutionize agriculture and ensure global food security.
Concluding, the review emphasizes the symbiotic link between microbes and sustainable food production. Microbial technologies can adapt agriculture to changing climate conditions, addressing water scarcity and enhancing soil moisture retention. Their potential to boost productivity in both traditional and precision agriculture under diverse climatic conditions is highlighted.
This review calls for the urgent recognition and harnessing of microbial power for a sustainable future. Embracing microbial technologies not only fosters environmental stewardship but also paves the way for a resilient and resource-efficient agricultural future.