快进现实:在扩展现实中通过实时单元测试编写无差错的上下文感知策略

ArXiv Pub Date : 2024-03-12 DOI:10.1145/3613904.3642158
Xun Qian, Tianyi Wang, Xuhai Xu, Tanya R. Jonker, Kashyap Todi
{"title":"快进现实:在扩展现实中通过实时单元测试编写无差错的上下文感知策略","authors":"Xun Qian, Tianyi Wang, Xuhai Xu, Tanya R. Jonker, Kashyap Todi","doi":"10.1145/3613904.3642158","DOIUrl":null,"url":null,"abstract":"Advances in ubiquitous computing have enabled end-user authoring of context-aware policies (CAPs) that control smart devices based on specific contexts of the user and environment. However, authoring CAPs accurately and avoiding run-time errors is challenging for end-users as it is difficult to foresee CAP behaviors under complex real-world conditions. We propose Fast-Forward Reality, an Extended Reality (XR) based authoring workflow that enables end-users to iteratively author and refine CAPs by validating their behaviors via simulated unit test cases. We develop a computational approach to automatically generate test cases based on the authored CAP and the user's context history. Our system delivers each test case with immersive visualizations in XR, facilitating users to verify the CAP behavior and identify necessary refinements. We evaluated Fast-Forward Reality in a user study (N=12). Our authoring and validation process improved the accuracy of CAPs and the users provided positive feedback on the system usability.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"23 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-Forward Reality: Authoring Error-Free Context-Aware Policies with Real-Time Unit Tests in Extended Reality\",\"authors\":\"Xun Qian, Tianyi Wang, Xuhai Xu, Tanya R. Jonker, Kashyap Todi\",\"doi\":\"10.1145/3613904.3642158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in ubiquitous computing have enabled end-user authoring of context-aware policies (CAPs) that control smart devices based on specific contexts of the user and environment. However, authoring CAPs accurately and avoiding run-time errors is challenging for end-users as it is difficult to foresee CAP behaviors under complex real-world conditions. We propose Fast-Forward Reality, an Extended Reality (XR) based authoring workflow that enables end-users to iteratively author and refine CAPs by validating their behaviors via simulated unit test cases. We develop a computational approach to automatically generate test cases based on the authored CAP and the user's context history. Our system delivers each test case with immersive visualizations in XR, facilitating users to verify the CAP behavior and identify necessary refinements. We evaluated Fast-Forward Reality in a user study (N=12). Our authoring and validation process improved the accuracy of CAPs and the users provided positive feedback on the system usability.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3613904.3642158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无处不在的计算技术的进步使得终端用户能够编写情境感知策略(CAP),根据用户和环境的特定情境来控制智能设备。然而,准确地编写 CAP 并避免运行时出错对终端用户来说是一项挑战,因为很难预见 CAP 在复杂的现实世界条件下的行为。我们提出了一种基于扩展现实(XR)的创作工作流程--Fast-Forward Reality,通过模拟单元测试案例验证 CAP 的行为,使最终用户能够反复创作和完善 CAP。我们开发了一种计算方法,可根据撰写的 CAP 和用户的上下文历史自动生成测试用例。我们的系统在 XR 中以身临其境的可视化方式提供每个测试用例,方便用户验证 CAP 行为并确定必要的改进。我们在一项用户研究(N=12)中对 Fast-Forward Reality 进行了评估。我们的编写和验证流程提高了 CAP 的准确性,用户对系统的可用性给予了积极反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast-Forward Reality: Authoring Error-Free Context-Aware Policies with Real-Time Unit Tests in Extended Reality
Advances in ubiquitous computing have enabled end-user authoring of context-aware policies (CAPs) that control smart devices based on specific contexts of the user and environment. However, authoring CAPs accurately and avoiding run-time errors is challenging for end-users as it is difficult to foresee CAP behaviors under complex real-world conditions. We propose Fast-Forward Reality, an Extended Reality (XR) based authoring workflow that enables end-users to iteratively author and refine CAPs by validating their behaviors via simulated unit test cases. We develop a computational approach to automatically generate test cases based on the authored CAP and the user's context history. Our system delivers each test case with immersive visualizations in XR, facilitating users to verify the CAP behavior and identify necessary refinements. We evaluated Fast-Forward Reality in a user study (N=12). Our authoring and validation process improved the accuracy of CAPs and the users provided positive feedback on the system usability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1