透明的人工智能披露义务:谁、做什么、何时、何地、为什么、如何做

ArXiv Pub Date : 2024-03-11 DOI:10.1145/3613905.3650750
Abdallah El Ali, Karthikeya Puttur Venkatraj, Sophie Morosoli, Laurens Naudts, Natali Helberger, Pablo César
{"title":"透明的人工智能披露义务:谁、做什么、何时、何地、为什么、如何做","authors":"Abdallah El Ali, Karthikeya Puttur Venkatraj, Sophie Morosoli, Laurens Naudts, Natali Helberger, Pablo César","doi":"10.1145/3613905.3650750","DOIUrl":null,"url":null,"abstract":"Advances in Generative Artificial Intelligence (AI) are resulting in AI-generated media output that is (nearly) indistinguishable from human-created content. This can drastically impact users and the media sector, especially given global risks of misinformation. While the currently discussed European AI Act aims at addressing these risks through Article 52's AI transparency obligations, its interpretation and implications remain unclear. In this early work, we adopt a participatory AI approach to derive key questions based on Article 52's disclosure obligations. We ran two workshops with researchers, designers, and engineers across disciplines (N=16), where participants deconstructed Article 52's relevant clauses using the 5W1H framework. We contribute a set of 149 questions clustered into five themes and 18 sub-themes. We believe these can not only help inform future legal developments and interpretations of Article 52, but also provide a starting point for Human-Computer Interaction research to (re-)examine disclosure transparency from a human-centered AI lens.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"29 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent AI Disclosure Obligations: Who, What, When, Where, Why, How\",\"authors\":\"Abdallah El Ali, Karthikeya Puttur Venkatraj, Sophie Morosoli, Laurens Naudts, Natali Helberger, Pablo César\",\"doi\":\"10.1145/3613905.3650750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in Generative Artificial Intelligence (AI) are resulting in AI-generated media output that is (nearly) indistinguishable from human-created content. This can drastically impact users and the media sector, especially given global risks of misinformation. While the currently discussed European AI Act aims at addressing these risks through Article 52's AI transparency obligations, its interpretation and implications remain unclear. In this early work, we adopt a participatory AI approach to derive key questions based on Article 52's disclosure obligations. We ran two workshops with researchers, designers, and engineers across disciplines (N=16), where participants deconstructed Article 52's relevant clauses using the 5W1H framework. We contribute a set of 149 questions clustered into five themes and 18 sub-themes. We believe these can not only help inform future legal developments and interpretations of Article 52, but also provide a starting point for Human-Computer Interaction research to (re-)examine disclosure transparency from a human-centered AI lens.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"29 51\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3613905.3650750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613905.3650750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(AI)的进步正导致人工智能生成的媒体输出(几乎)与人类创作的内容无异。这会对用户和媒体行业产生巨大影响,尤其是考虑到全球的错误信息风险。虽然目前讨论的《欧洲人工智能法》旨在通过第 52 条的人工智能透明度义务来应对这些风险,但其解释和影响仍不明确。在这项早期工作中,我们采用了参与式人工智能方法,根据第 52 条的披露义务提出关键问题。我们与不同学科的研究人员、设计师和工程师(16 人)举办了两次研讨会,与会者使用 5W1H 框架解构了第 52 条的相关条款。我们提出了 149 个问题,分为 5 个主题和 18 个子主题。我们相信,这些问题不仅有助于为未来的法律发展和对第 52 条的解释提供信息,还能为人机交互研究提供一个起点,从以人为本的人工智能视角来(重新)审视信息披露的透明度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transparent AI Disclosure Obligations: Who, What, When, Where, Why, How
Advances in Generative Artificial Intelligence (AI) are resulting in AI-generated media output that is (nearly) indistinguishable from human-created content. This can drastically impact users and the media sector, especially given global risks of misinformation. While the currently discussed European AI Act aims at addressing these risks through Article 52's AI transparency obligations, its interpretation and implications remain unclear. In this early work, we adopt a participatory AI approach to derive key questions based on Article 52's disclosure obligations. We ran two workshops with researchers, designers, and engineers across disciplines (N=16), where participants deconstructed Article 52's relevant clauses using the 5W1H framework. We contribute a set of 149 questions clustered into five themes and 18 sub-themes. We believe these can not only help inform future legal developments and interpretations of Article 52, but also provide a starting point for Human-Computer Interaction research to (re-)examine disclosure transparency from a human-centered AI lens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1