{"title":"SCORE:自我监督对应关系微调,改进内容表征","authors":"Amit Meghanani, Thomas Hain","doi":"10.1109/icassp48485.2024.10448060","DOIUrl":null,"url":null,"abstract":"There is a growing interest in cost-effective self-supervised fine-tuning (SSFT) of self-supervised learning (SSL)-based speech models to obtain task-specific representations. These task-specific representations are used for robust performance on various downstream tasks by fine-tuning on the labelled data. This work presents a cost-effective SSFT method named Self-supervised Correspondence (SCORE) fine-tuning to adapt the SSL speech representations for content-related tasks. The proposed method uses a correspondence training strategy, aiming to learn similar representations from perturbed speech and original speech. Commonly used data augmentation techniques for content-related tasks (ASR) are applied to obtain perturbed speech. SCORE fine-tuned HuBERT outperforms the vanilla HuBERT on SUPERB benchmark with only a few hours of fine-tuning (<5 hrs) on a single GPU for automatic speech recognition, phoneme recognition, and query-by-example tasks, with relative improvements of 1.09%, 3.58%, and 12.65%, respectively. SCORE provides competitive results with the recently proposed SSFT method SPIN, using only 1/3 of the processed speech compared to SPIN.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"19 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SCORE: Self-supervised Correspondence Fine-tuning for Improved Content Representations\",\"authors\":\"Amit Meghanani, Thomas Hain\",\"doi\":\"10.1109/icassp48485.2024.10448060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in cost-effective self-supervised fine-tuning (SSFT) of self-supervised learning (SSL)-based speech models to obtain task-specific representations. These task-specific representations are used for robust performance on various downstream tasks by fine-tuning on the labelled data. This work presents a cost-effective SSFT method named Self-supervised Correspondence (SCORE) fine-tuning to adapt the SSL speech representations for content-related tasks. The proposed method uses a correspondence training strategy, aiming to learn similar representations from perturbed speech and original speech. Commonly used data augmentation techniques for content-related tasks (ASR) are applied to obtain perturbed speech. SCORE fine-tuned HuBERT outperforms the vanilla HuBERT on SUPERB benchmark with only a few hours of fine-tuning (<5 hrs) on a single GPU for automatic speech recognition, phoneme recognition, and query-by-example tasks, with relative improvements of 1.09%, 3.58%, and 12.65%, respectively. SCORE provides competitive results with the recently proposed SSFT method SPIN, using only 1/3 of the processed speech compared to SPIN.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp48485.2024.10448060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10448060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SCORE: Self-supervised Correspondence Fine-tuning for Improved Content Representations
There is a growing interest in cost-effective self-supervised fine-tuning (SSFT) of self-supervised learning (SSL)-based speech models to obtain task-specific representations. These task-specific representations are used for robust performance on various downstream tasks by fine-tuning on the labelled data. This work presents a cost-effective SSFT method named Self-supervised Correspondence (SCORE) fine-tuning to adapt the SSL speech representations for content-related tasks. The proposed method uses a correspondence training strategy, aiming to learn similar representations from perturbed speech and original speech. Commonly used data augmentation techniques for content-related tasks (ASR) are applied to obtain perturbed speech. SCORE fine-tuned HuBERT outperforms the vanilla HuBERT on SUPERB benchmark with only a few hours of fine-tuning (<5 hrs) on a single GPU for automatic speech recognition, phoneme recognition, and query-by-example tasks, with relative improvements of 1.09%, 3.58%, and 12.65%, respectively. SCORE provides competitive results with the recently proposed SSFT method SPIN, using only 1/3 of the processed speech compared to SPIN.