通过整合频率和音乐风格信息增强舞蹈生成的表现力

Qiaochu Huang, Xu He, Boshi Tang, Hao-Wen Zhuang, Liyang Chen, Shuochen Gao, Zhiyong Wu, Haozhi Huang, Helen M. Meng
{"title":"通过整合频率和音乐风格信息增强舞蹈生成的表现力","authors":"Qiaochu Huang, Xu He, Boshi Tang, Hao-Wen Zhuang, Liyang Chen, Shuochen Gao, Zhiyong Wu, Haozhi Huang, Helen M. Meng","doi":"10.1109/icassp48485.2024.10448469","DOIUrl":null,"url":null,"abstract":"Dance generation, as a branch of human motion generation, has attracted increasing attention. Recently, a few works attempt to enhance dance expressiveness, which includes genre matching, beat alignment, and dance dynamics, from certain aspects. However, the enhancement is quite limited as they lack comprehensive consideration of the aforementioned three factors. In this paper, we propose ExpressiveBailando, a novel dance generation method designed to generate expressive dances, concurrently taking all three factors into account. Specifically, we mitigate the issue of speed homogenization by incorporating frequency information into VQ-VAE, thus improving dance dynamics. Additionally, we integrate music style information by extracting genre- and beat-related features with a pre-trained music model, hence achieving improvements in the other two factors. Extensive experimental results demonstrate that our proposed method can generate dances with high expressiveness and outperforms existing methods both qualitatively and quantitatively.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"16 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Expressiveness in Dance Generation via Integrating Frequency and Music Style Information\",\"authors\":\"Qiaochu Huang, Xu He, Boshi Tang, Hao-Wen Zhuang, Liyang Chen, Shuochen Gao, Zhiyong Wu, Haozhi Huang, Helen M. Meng\",\"doi\":\"10.1109/icassp48485.2024.10448469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dance generation, as a branch of human motion generation, has attracted increasing attention. Recently, a few works attempt to enhance dance expressiveness, which includes genre matching, beat alignment, and dance dynamics, from certain aspects. However, the enhancement is quite limited as they lack comprehensive consideration of the aforementioned three factors. In this paper, we propose ExpressiveBailando, a novel dance generation method designed to generate expressive dances, concurrently taking all three factors into account. Specifically, we mitigate the issue of speed homogenization by incorporating frequency information into VQ-VAE, thus improving dance dynamics. Additionally, we integrate music style information by extracting genre- and beat-related features with a pre-trained music model, hence achieving improvements in the other two factors. Extensive experimental results demonstrate that our proposed method can generate dances with high expressiveness and outperforms existing methods both qualitatively and quantitatively.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp48485.2024.10448469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10448469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

舞蹈生成作为人类动作生成的一个分支,已引起越来越多的关注。最近,一些作品试图从某些方面增强舞蹈的表现力,其中包括体裁匹配、节拍协调和舞蹈动态。然而,由于缺乏对上述三方面因素的综合考虑,其增强效果相当有限。在本文中,我们提出了一种新颖的舞蹈生成方法 ExpressiveBailando,该方法旨在生成富有表现力的舞蹈,同时兼顾上述三个因素。具体来说,我们通过将频率信息纳入 VQ-VAE 来缓解速度同质化问题,从而改善舞蹈的动态效果。此外,我们还整合了音乐风格信息,通过预先训练的音乐模型提取与流派和节拍相关的特征,从而改善了其他两个因素。广泛的实验结果表明,我们提出的方法可以生成具有高表现力的舞蹈,在质量和数量上都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Expressiveness in Dance Generation via Integrating Frequency and Music Style Information
Dance generation, as a branch of human motion generation, has attracted increasing attention. Recently, a few works attempt to enhance dance expressiveness, which includes genre matching, beat alignment, and dance dynamics, from certain aspects. However, the enhancement is quite limited as they lack comprehensive consideration of the aforementioned three factors. In this paper, we propose ExpressiveBailando, a novel dance generation method designed to generate expressive dances, concurrently taking all three factors into account. Specifically, we mitigate the issue of speed homogenization by incorporating frequency information into VQ-VAE, thus improving dance dynamics. Additionally, we integrate music style information by extracting genre- and beat-related features with a pre-trained music model, hence achieving improvements in the other two factors. Extensive experimental results demonstrate that our proposed method can generate dances with high expressiveness and outperforms existing methods both qualitatively and quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1