利用特征多样性逆向扰动攻击变压器

ArXiv Pub Date : 2024-03-10 DOI:10.1609/aaai.v38i3.27947
Chenxing Gao, Hang Zhou, Junqing Yu, Yuteng Ye, Jiale Cai, Junle Wang, Wei Yang
{"title":"利用特征多样性逆向扰动攻击变压器","authors":"Chenxing Gao, Hang Zhou, Junqing Yu, Yuteng Ye, Jiale Cai, Junle Wang, Wei Yang","doi":"10.1609/aaai.v38i3.27947","DOIUrl":null,"url":null,"abstract":"Understanding the mechanisms behind Vision Transformer (ViT), particularly its vulnerability to adversarial perturbations, is crucial for addressing challenges in its real-world applications. Existing ViT adversarial attackers rely on labels to calculate the gradient for perturbation, and exhibit low transferability to other structures and tasks. In this paper, we present a label-free white-box attack approach for ViT-based models that exhibits strong transferability to various black-box models, including most ViT variants, CNNs, and MLPs, even for models developed for other modalities. Our inspiration comes from the feature collapse phenomenon in ViTs, where the critical attention mechanism overly depends on the low-frequency component of features, causing the features in middle-to-end layers to become increasingly similar and eventually collapse. We propose the feature diversity attacker to naturally accelerate this process and achieve remarkable performance and transferability.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"21 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attacking Transformers with Feature Diversity Adversarial Perturbation\",\"authors\":\"Chenxing Gao, Hang Zhou, Junqing Yu, Yuteng Ye, Jiale Cai, Junle Wang, Wei Yang\",\"doi\":\"10.1609/aaai.v38i3.27947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the mechanisms behind Vision Transformer (ViT), particularly its vulnerability to adversarial perturbations, is crucial for addressing challenges in its real-world applications. Existing ViT adversarial attackers rely on labels to calculate the gradient for perturbation, and exhibit low transferability to other structures and tasks. In this paper, we present a label-free white-box attack approach for ViT-based models that exhibits strong transferability to various black-box models, including most ViT variants, CNNs, and MLPs, even for models developed for other modalities. Our inspiration comes from the feature collapse phenomenon in ViTs, where the critical attention mechanism overly depends on the low-frequency component of features, causing the features in middle-to-end layers to become increasingly similar and eventually collapse. We propose the feature diversity attacker to naturally accelerate this process and achieve remarkable performance and transferability.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"21 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v38i3.27947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v38i3.27947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解视觉变换器(ViT)背后的机制,特别是它在对抗性扰动面前的脆弱性,对于应对其在现实世界应用中的挑战至关重要。现有的 ViT 对抗性攻击依赖于标签来计算扰动梯度,对其他结构和任务的可移植性较低。在本文中,我们针对基于 ViT 的模型提出了一种无标签白箱攻击方法,这种方法对各种黑箱模型(包括大多数 ViT 变体、CNN 和 MLP)具有很强的可移植性,甚至对为其他模态开发的模型也是如此。我们的灵感来自于 ViT 中的特征坍塌现象,即临界注意力机制过度依赖于特征的低频分量,导致中层到末层的特征越来越相似,最终坍塌。我们提出了特征多样性攻击器,以自然地加速这一过程,并实现显著的性能和可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attacking Transformers with Feature Diversity Adversarial Perturbation
Understanding the mechanisms behind Vision Transformer (ViT), particularly its vulnerability to adversarial perturbations, is crucial for addressing challenges in its real-world applications. Existing ViT adversarial attackers rely on labels to calculate the gradient for perturbation, and exhibit low transferability to other structures and tasks. In this paper, we present a label-free white-box attack approach for ViT-based models that exhibits strong transferability to various black-box models, including most ViT variants, CNNs, and MLPs, even for models developed for other modalities. Our inspiration comes from the feature collapse phenomenon in ViTs, where the critical attention mechanism overly depends on the low-frequency component of features, causing the features in middle-to-end layers to become increasingly similar and eventually collapse. We propose the feature diversity attacker to naturally accelerate this process and achieve remarkable performance and transferability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1