利用变分层次变换器考虑多变量时间序列中的非平稳性以进行预测

ArXiv Pub Date : 2024-03-08 DOI:10.1609/aaai.v38i14.29483
Muyao Wang, Wenchao Chen, Bo Chen
{"title":"利用变分层次变换器考虑多变量时间序列中的非平稳性以进行预测","authors":"Muyao Wang, Wenchao Chen, Bo Chen","doi":"10.1609/aaai.v38i14.29483","DOIUrl":null,"url":null,"abstract":"The forecasting of Multivariate Time Series (MTS) has long been an important but challenging task. Due to the non-stationary problem across long-distance time steps, previous studies primarily adopt stationarization method to attenuate the non-stationary problem of original series for better predictability. However, existed methods always adopt the stationarized series, which ignore the inherent non-stationarity, and have difficulty in modeling MTS with complex distributions due to the lack of stochasticity. To tackle these problems, we first develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and stochastity characteristics within MTS, and then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans), which recovers the intrinsic non-stationary information into temporal dependencies. Being an powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to the forecasting tasks. Extensive experiments on diverse datasets show the efficiency of HTV-Trans on MTS forecasting tasks.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"6 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting\",\"authors\":\"Muyao Wang, Wenchao Chen, Bo Chen\",\"doi\":\"10.1609/aaai.v38i14.29483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting of Multivariate Time Series (MTS) has long been an important but challenging task. Due to the non-stationary problem across long-distance time steps, previous studies primarily adopt stationarization method to attenuate the non-stationary problem of original series for better predictability. However, existed methods always adopt the stationarized series, which ignore the inherent non-stationarity, and have difficulty in modeling MTS with complex distributions due to the lack of stochasticity. To tackle these problems, we first develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and stochastity characteristics within MTS, and then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans), which recovers the intrinsic non-stationary information into temporal dependencies. Being an powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to the forecasting tasks. Extensive experiments on diverse datasets show the efficiency of HTV-Trans on MTS forecasting tasks.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"6 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v38i14.29483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v38i14.29483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,多变量时间序列(MTS)预测一直是一项重要而又具有挑战性的任务。由于存在跨长距离时间步长的非平稳性问题,以往的研究主要采用平稳化方法来削弱原始序列的非平稳性问题,以获得更好的可预测性。然而,现有方法总是采用静止化序列,忽略了固有的非平稳性,而且由于缺乏随机性,难以对具有复杂分布的 MTS 进行建模。为了解决这些问题,我们首先开发了一个功能强大的分层概率生成模块,以考虑 MTS 的非平稳性和随机性特征,然后将其与变换器相结合,建立了一个定义明确的变异生成动态模型,命名为分层时间序列变异变换器(HTV-Trans),将内在的非平稳信息复原为时间依赖关系。作为一个强大的概率模型,HTV-Trans 被用来学习 MTS 的表达式表示,并应用于预测任务。在不同数据集上进行的大量实验表明,HTV-Trans 在 MTS 预测任务中非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting
The forecasting of Multivariate Time Series (MTS) has long been an important but challenging task. Due to the non-stationary problem across long-distance time steps, previous studies primarily adopt stationarization method to attenuate the non-stationary problem of original series for better predictability. However, existed methods always adopt the stationarized series, which ignore the inherent non-stationarity, and have difficulty in modeling MTS with complex distributions due to the lack of stochasticity. To tackle these problems, we first develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and stochastity characteristics within MTS, and then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans), which recovers the intrinsic non-stationary information into temporal dependencies. Being an powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to the forecasting tasks. Extensive experiments on diverse datasets show the efficiency of HTV-Trans on MTS forecasting tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1