通过机器学习全面评估恶意软件检测中的 Mal-API-2019 数据集

ArXiv Pub Date : 2024-03-04 DOI:10.62051/ijcsit.v2n1.01
Zhenglin Li, Haibei Zhu, Houze Liu, Jintong Song, Qishuo Cheng
{"title":"通过机器学习全面评估恶意软件检测中的 Mal-API-2019 数据集","authors":"Zhenglin Li, Haibei Zhu, Houze Liu, Jintong Song, Qishuo Cheng","doi":"10.62051/ijcsit.v2n1.01","DOIUrl":null,"url":null,"abstract":"This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"14 4‐6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection\",\"authors\":\"Zhenglin Li, Haibei Zhu, Houze Liu, Jintong Song, Qishuo Cheng\",\"doi\":\"10.62051/ijcsit.v2n1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"14 4‐6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62051/ijcsit.v2n1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62051/ijcsit.v2n1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究利用机器学习技术对恶意软件检测进行了深入研究,重点是利用 Mal-API-2019 数据集对各种分类模型进行评估。目的是通过更有效地识别和缓解威胁来提高网络安全能力。研究探讨了集合和非集合机器学习方法,如随机森林(Random Forest)、XGBoost、K Nearest Neighbor (KNN) 和神经网络。特别强调了数据预处理技术(尤其是 TF-IDF 表示法和主成分分析)在提高模型性能方面的重要性。结果表明,与其他方法相比,集合方法(尤其是随机森林和 XGBoost)在准确度、精确度和召回率方面表现出更高的水平,突出了它们在恶意软件检测中的有效性。论文还讨论了局限性和潜在的未来发展方向,强调需要不断调整以应对恶意软件不断演变的性质。这项研究为网络安全领域正在进行的讨论做出了贡献,并为在数字时代开发更强大的恶意软件检测系统提供了实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection
This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1