土工格室的几何形状对重复荷载下柔性路面性能的实验研究

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-03-27 DOI:10.1016/j.geotexmem.2024.03.007
Sayanti Banerjee, Bappaditya Manna, J.T. Shahu
{"title":"土工格室的几何形状对重复荷载下柔性路面性能的实验研究","authors":"Sayanti Banerjee,&nbsp;Bappaditya Manna,&nbsp;J.T. Shahu","doi":"10.1016/j.geotexmem.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>To evaluate the benefit of geocells of different geometrical configurations for pavement application, full-scale instrumented model tests were performed on pavement sections reinforced with geocells of different geometrical configurations subjected to monotonic and repeated loading. The responses studied were stress distribution in different pavement layers, induced strains in geocell walls, and settlement characteristics. The reinforced sections exhibited a significant reduction in rut depth as well as localized stress concentration compared to the unreinforced section. The reduction in rut depth was found to be influenced by the geocell height as well as weld spacing. The geocell reinforcement was found to distribute the stresses in the subgrade and subbase layers more efficiently, thus reducing the stress concentration in these layers. The strain measurements were found to be higher at the bottom of the geocell walls indicating a higher confinement effect on a lower part of the geocell. In the field, mostly geocells of 356 mm weld spacing and 150 mm height (SW356-H150) are used. However, this study suggests that a geocell of 330 mm weld spacing and 100 mm height (SW330-H100) having approximately 30% lower cost compared to SW356-H150 is as effective in reducing the rut depth and localized vertical stress distribution.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the geometry of geocell on the performance of flexible pavement under repeated loading\",\"authors\":\"Sayanti Banerjee,&nbsp;Bappaditya Manna,&nbsp;J.T. Shahu\",\"doi\":\"10.1016/j.geotexmem.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To evaluate the benefit of geocells of different geometrical configurations for pavement application, full-scale instrumented model tests were performed on pavement sections reinforced with geocells of different geometrical configurations subjected to monotonic and repeated loading. The responses studied were stress distribution in different pavement layers, induced strains in geocell walls, and settlement characteristics. The reinforced sections exhibited a significant reduction in rut depth as well as localized stress concentration compared to the unreinforced section. The reduction in rut depth was found to be influenced by the geocell height as well as weld spacing. The geocell reinforcement was found to distribute the stresses in the subgrade and subbase layers more efficiently, thus reducing the stress concentration in these layers. The strain measurements were found to be higher at the bottom of the geocell walls indicating a higher confinement effect on a lower part of the geocell. In the field, mostly geocells of 356 mm weld spacing and 150 mm height (SW356-H150) are used. However, this study suggests that a geocell of 330 mm weld spacing and 100 mm height (SW330-H100) having approximately 30% lower cost compared to SW356-H150 is as effective in reducing the rut depth and localized vertical stress distribution.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000281\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000281","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了评估不同几何结构的土工格室在路面应用中的优势,对使用不同几何结构的土工格室加固的路面部分进行了全尺寸仪器模型试验,以承受单调和重复荷载。研究的反应包括不同路面层的应力分布、土工格室壁的诱发应变以及沉降特性。与未加固路段相比,加固路段的车辙深度和局部应力集中程度都有显著降低。车辙深度的减小受土工格室高度和焊接间距的影响。土工格室加固后可以更有效地分散基层和底基层的应力,从而减少这些层的应力集中。应变测量结果表明,土工格室壁底部的应变较高,这表明土工格室下部具有较高的约束效应。在实际应用中,大多数土工格室的焊缝间距为 356 毫米,高度为 150 毫米(SW356-H150)。然而,本研究表明,与 SW356-H150 相比,焊缝间距为 330 毫米、高度为 100 毫米的土工格室(SW330-H100)成本低约 30%,在减少车辙深度和局部垂直应力分布方面同样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of the geometry of geocell on the performance of flexible pavement under repeated loading

To evaluate the benefit of geocells of different geometrical configurations for pavement application, full-scale instrumented model tests were performed on pavement sections reinforced with geocells of different geometrical configurations subjected to monotonic and repeated loading. The responses studied were stress distribution in different pavement layers, induced strains in geocell walls, and settlement characteristics. The reinforced sections exhibited a significant reduction in rut depth as well as localized stress concentration compared to the unreinforced section. The reduction in rut depth was found to be influenced by the geocell height as well as weld spacing. The geocell reinforcement was found to distribute the stresses in the subgrade and subbase layers more efficiently, thus reducing the stress concentration in these layers. The strain measurements were found to be higher at the bottom of the geocell walls indicating a higher confinement effect on a lower part of the geocell. In the field, mostly geocells of 356 mm weld spacing and 150 mm height (SW356-H150) are used. However, this study suggests that a geocell of 330 mm weld spacing and 100 mm height (SW330-H100) having approximately 30% lower cost compared to SW356-H150 is as effective in reducing the rut depth and localized vertical stress distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Seismic response and mitigation measures for T shape retaining wall in liquefiable site Stress-strain responses of EPS geofoam upon cyclic simple shearing: Experimental investigations and constitutive modeling A large-size model test study on the consolidation effect of construction waste slurry under self-weight and bottom vacuum preloading Observations from opening of a novel geotextile tube connection in field test site Liquefaction and reliquefaction mitigation of sand specimen treated with prefabricated vertical drains: An experimental investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1