Georg M. Guebitz , Orietta Monticelli , Gibson S. Nyanhongo , Alessandro Pellis
{"title":"生物催化:芳香-脂肪族聚合物合成和解聚的可持续解决方案","authors":"Georg M. Guebitz , Orietta Monticelli , Gibson S. Nyanhongo , Alessandro Pellis","doi":"10.1016/j.cogsc.2024.100919","DOIUrl":null,"url":null,"abstract":"<div><p>The recent energy crisis and the increasing societal awareness of the problems caused by plastic pollution have enhanced the efforts and the funding to develop novel technologies for the synthesis, processing, and recycling of innovative materials. This review article summarizes the most recent advances made on the use of biocatalysis as a sustainable technology for the synthesis and the recycling of nonfuranic aromatic polyesters, a very young and still largely unexplored field that has a great potential to provide alternative solutions to the use of 2,5-furandicarboxylic acid to produce aromatic-aliphatic polyesters.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100919"},"PeriodicalIF":9.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000403/pdfft?md5=a105c0ee4536ec8694d15da52b322f72&pid=1-s2.0-S2452223624000403-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biocatalysis: Sustainable solutions for the synthesis and depolymerization of aromatic–aliphatic polymers\",\"authors\":\"Georg M. Guebitz , Orietta Monticelli , Gibson S. Nyanhongo , Alessandro Pellis\",\"doi\":\"10.1016/j.cogsc.2024.100919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent energy crisis and the increasing societal awareness of the problems caused by plastic pollution have enhanced the efforts and the funding to develop novel technologies for the synthesis, processing, and recycling of innovative materials. This review article summarizes the most recent advances made on the use of biocatalysis as a sustainable technology for the synthesis and the recycling of nonfuranic aromatic polyesters, a very young and still largely unexplored field that has a great potential to provide alternative solutions to the use of 2,5-furandicarboxylic acid to produce aromatic-aliphatic polyesters.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"47 \",\"pages\":\"Article 100919\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000403/pdfft?md5=a105c0ee4536ec8694d15da52b322f72&pid=1-s2.0-S2452223624000403-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000403\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biocatalysis: Sustainable solutions for the synthesis and depolymerization of aromatic–aliphatic polymers
The recent energy crisis and the increasing societal awareness of the problems caused by plastic pollution have enhanced the efforts and the funding to develop novel technologies for the synthesis, processing, and recycling of innovative materials. This review article summarizes the most recent advances made on the use of biocatalysis as a sustainable technology for the synthesis and the recycling of nonfuranic aromatic polyesters, a very young and still largely unexplored field that has a great potential to provide alternative solutions to the use of 2,5-furandicarboxylic acid to produce aromatic-aliphatic polyesters.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.