Jassinnee Milano , Hwai Chyuan Ong , Zhi Chao Ong , Ghasem Ghadyani , Zubaidah Binti Ismail , Ibham Veza , A. Masudi , Sieh Kiong Tiong , A.S. Silitonga
{"title":"应用纳米添加剂实现高性能柴油、生物柴油及其混合物的策略","authors":"Jassinnee Milano , Hwai Chyuan Ong , Zhi Chao Ong , Ghasem Ghadyani , Zubaidah Binti Ismail , Ibham Veza , A. Masudi , Sieh Kiong Tiong , A.S. Silitonga","doi":"10.1016/j.jfueco.2024.100111","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoparticles are being used as additives for solid and liquid fuels owing to their high specific surface area (high reactivity) and potential ability to store energy in surfaces. The use of nanoparticles in diesels, biodiesels, and their blends is a novel area with unrealised potential owing to the higher catalytic activity of nanoparticles compared with that of micro-sized materials Nanoparticles have been shown to disperse more evenly in fuels and exhibit high stability. In addition, nanoparticles in similar media burn faster than micro-sized particles. The addition of nanoparticles into diesel, biodiesels, and their blends affect the physicochemical properties of the fuels such as kinematic viscosity, density, flash point, and cetane number. Studies have shown that nanoparticles affect the brake specific fuel consumption, brake specific energy consumption, and brake thermal efficiency, depending on the dosage and type of nanoparticles. Studies have also shown that the addition of nanoparticles affect carbon monoxide, carbon dioxide, nitrogen oxide, and unburned hydrocarbon emissions, along with smoke opacity. This review presents the application of various types of nanoparticles in diesel, biodiesels, and their blends to enhance the physicochemical properties of the fuels, combustion efficiency, and engine performance, and reduce harmful exhaust emissions. It is believed that this review will be beneficial to scholars, researchers, and industrial practitioners looking forward to improve diesel engine performance and reduce exhaust emissions by exploiting nanotechnology.</p></div>","PeriodicalId":100556,"journal":{"name":"Fuel Communications","volume":"19 ","pages":"Article 100111"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666052024000062/pdfft?md5=1d6f400db2d555fe73b26f1c84412fab&pid=1-s2.0-S2666052024000062-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strategies in the application of nanoadditives to achieve high-performance diesel, biodiesels, and their blends\",\"authors\":\"Jassinnee Milano , Hwai Chyuan Ong , Zhi Chao Ong , Ghasem Ghadyani , Zubaidah Binti Ismail , Ibham Veza , A. Masudi , Sieh Kiong Tiong , A.S. Silitonga\",\"doi\":\"10.1016/j.jfueco.2024.100111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoparticles are being used as additives for solid and liquid fuels owing to their high specific surface area (high reactivity) and potential ability to store energy in surfaces. The use of nanoparticles in diesels, biodiesels, and their blends is a novel area with unrealised potential owing to the higher catalytic activity of nanoparticles compared with that of micro-sized materials Nanoparticles have been shown to disperse more evenly in fuels and exhibit high stability. In addition, nanoparticles in similar media burn faster than micro-sized particles. The addition of nanoparticles into diesel, biodiesels, and their blends affect the physicochemical properties of the fuels such as kinematic viscosity, density, flash point, and cetane number. Studies have shown that nanoparticles affect the brake specific fuel consumption, brake specific energy consumption, and brake thermal efficiency, depending on the dosage and type of nanoparticles. Studies have also shown that the addition of nanoparticles affect carbon monoxide, carbon dioxide, nitrogen oxide, and unburned hydrocarbon emissions, along with smoke opacity. This review presents the application of various types of nanoparticles in diesel, biodiesels, and their blends to enhance the physicochemical properties of the fuels, combustion efficiency, and engine performance, and reduce harmful exhaust emissions. It is believed that this review will be beneficial to scholars, researchers, and industrial practitioners looking forward to improve diesel engine performance and reduce exhaust emissions by exploiting nanotechnology.</p></div>\",\"PeriodicalId\":100556,\"journal\":{\"name\":\"Fuel Communications\",\"volume\":\"19 \",\"pages\":\"Article 100111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666052024000062/pdfft?md5=1d6f400db2d555fe73b26f1c84412fab&pid=1-s2.0-S2666052024000062-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666052024000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666052024000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategies in the application of nanoadditives to achieve high-performance diesel, biodiesels, and their blends
Nanoparticles are being used as additives for solid and liquid fuels owing to their high specific surface area (high reactivity) and potential ability to store energy in surfaces. The use of nanoparticles in diesels, biodiesels, and their blends is a novel area with unrealised potential owing to the higher catalytic activity of nanoparticles compared with that of micro-sized materials Nanoparticles have been shown to disperse more evenly in fuels and exhibit high stability. In addition, nanoparticles in similar media burn faster than micro-sized particles. The addition of nanoparticles into diesel, biodiesels, and their blends affect the physicochemical properties of the fuels such as kinematic viscosity, density, flash point, and cetane number. Studies have shown that nanoparticles affect the brake specific fuel consumption, brake specific energy consumption, and brake thermal efficiency, depending on the dosage and type of nanoparticles. Studies have also shown that the addition of nanoparticles affect carbon monoxide, carbon dioxide, nitrogen oxide, and unburned hydrocarbon emissions, along with smoke opacity. This review presents the application of various types of nanoparticles in diesel, biodiesels, and their blends to enhance the physicochemical properties of the fuels, combustion efficiency, and engine performance, and reduce harmful exhaust emissions. It is believed that this review will be beneficial to scholars, researchers, and industrial practitioners looking forward to improve diesel engine performance and reduce exhaust emissions by exploiting nanotechnology.