分子碰撞频率和吸附容量对煤中瓦斯渗流通量影响的实验研究

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2024-03-01 DOI:10.2118/219733-pa
Yang Gao, Qingchun Yu
{"title":"分子碰撞频率和吸附容量对煤中瓦斯渗流通量影响的实验研究","authors":"Yang Gao, Qingchun Yu","doi":"10.2118/219733-pa","DOIUrl":null,"url":null,"abstract":"\n The differences in the transport behavior and adsorption capacity of different gases in coal play crucial roles in the evolution of coal permeability. Previous studies of coreflooding experiments failed to explain the mechanism of gas flow and have attributed the variation in gas seepage flux (flow rate) at the beginning of the experiment to the change in effective stress, while the differences in the microscopic properties of different gases, such as molar mass, molecular diameter, mean molecular free path, and molecular collision frequency, were ignored. To research the effect of these gas properties on seepage flux while circumventing the effective stress, coreflooding experiments with helium (He), argon (Ar), nitrogen (N2), methane (CH4), and carbon dioxide (CO2) were designed. The results show that the gas transport velocity in coal is affected by the combination of molecular collision frequency and dynamic viscosity, and the transport velocities follow the order of ν (CH4) > ν (He) > ν (N2) > ν (CO2) > ν (Ar). A permeability equation corrected by the molecular collision frequency is proposed to eliminate differences in the permeabilities measured with different gases. The adsorption of different gases on the coal matrix causes different degrees of swelling, and the adsorption-induced swelling strains follow the order of ε (CO2) > ε (CH4) > ε (N2) > ε (Ar) > ε (He). The reduction in seepage flux and irreversible alterations in pore structure caused by adsorption-induced swelling are positively correlated with their adsorption capacities. The gas seepage fluxes after adsorption equilibrium of coal follow the order of Q (He) > Q (CH4) >Q (N2) > Q (Ar) > Q (CO2). Like supercritical CO2 (ScCO2), conventional CO2 can also dissolve the organic matter in coal. The organic molecules close to the walls of the cleats along the direction of gas flow are preferentially dissolved by CO2, and the gas seepage flux increases when the dissolution effect on the cleat width is greater than that on adsorption swelling.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of the Effect of Molecular Collision Frequency and Adsorption Capacity on Gas Seepage Flux in Coal\",\"authors\":\"Yang Gao, Qingchun Yu\",\"doi\":\"10.2118/219733-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The differences in the transport behavior and adsorption capacity of different gases in coal play crucial roles in the evolution of coal permeability. Previous studies of coreflooding experiments failed to explain the mechanism of gas flow and have attributed the variation in gas seepage flux (flow rate) at the beginning of the experiment to the change in effective stress, while the differences in the microscopic properties of different gases, such as molar mass, molecular diameter, mean molecular free path, and molecular collision frequency, were ignored. To research the effect of these gas properties on seepage flux while circumventing the effective stress, coreflooding experiments with helium (He), argon (Ar), nitrogen (N2), methane (CH4), and carbon dioxide (CO2) were designed. The results show that the gas transport velocity in coal is affected by the combination of molecular collision frequency and dynamic viscosity, and the transport velocities follow the order of ν (CH4) > ν (He) > ν (N2) > ν (CO2) > ν (Ar). A permeability equation corrected by the molecular collision frequency is proposed to eliminate differences in the permeabilities measured with different gases. The adsorption of different gases on the coal matrix causes different degrees of swelling, and the adsorption-induced swelling strains follow the order of ε (CO2) > ε (CH4) > ε (N2) > ε (Ar) > ε (He). The reduction in seepage flux and irreversible alterations in pore structure caused by adsorption-induced swelling are positively correlated with their adsorption capacities. The gas seepage fluxes after adsorption equilibrium of coal follow the order of Q (He) > Q (CH4) >Q (N2) > Q (Ar) > Q (CO2). Like supercritical CO2 (ScCO2), conventional CO2 can also dissolve the organic matter in coal. The organic molecules close to the walls of the cleats along the direction of gas flow are preferentially dissolved by CO2, and the gas seepage flux increases when the dissolution effect on the cleat width is greater than that on adsorption swelling.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/219733-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/219733-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

不同气体在煤中的运移行为和吸附能力的差异对煤的渗透性演变起着至关重要的作用。以往的岩心充水实验研究未能解释气体流动的机理,将实验开始时气体渗流通量(流速)的变化归因于有效应力的变化,而忽略了不同气体微观性质的差异,如摩尔质量、分子直径、平均分子自由路径和分子碰撞频率等。为了在规避有效应力的同时研究这些气体特性对渗流通量的影响,设计了氦气(He)、氩气(Ar)、氮气(N2)、甲烷(CH4)和二氧化碳(CO2)的充芯实验。结果表明,煤中气体的运移速度受分子碰撞频率和动态粘度的共同影响,运移速度的顺序为 ν (CH4) > ν (He) > ν (N2) > ν (CO2) > ν (Ar)。提出了一个由分子碰撞频率校正的渗透率方程,以消除不同气体测量到的渗透率之间的差异。不同气体在煤基体上的吸附会引起不同程度的膨胀,吸附引起的膨胀应变遵循ε(CO2)>ε(CH4)>ε(N2)>ε(Ar)>ε(He)的顺序。吸附膨胀引起的渗流通量减少和孔隙结构的不可逆改变与吸附容量呈正相关。煤炭吸附平衡后的气体渗流通量按照 Q(He)>Q(CH4)>Q(N2)>Q(Ar)>Q(CO2)的顺序排列。与超临界 CO2(ScCO2)一样,常规 CO2 也能溶解煤中的有机物。沿气体流动方向靠近裂隙壁的有机分子优先被 CO2 溶解,当对裂隙宽度的溶解作用大于对吸附膨胀的溶解作用时,气体渗流通量会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study of the Effect of Molecular Collision Frequency and Adsorption Capacity on Gas Seepage Flux in Coal
The differences in the transport behavior and adsorption capacity of different gases in coal play crucial roles in the evolution of coal permeability. Previous studies of coreflooding experiments failed to explain the mechanism of gas flow and have attributed the variation in gas seepage flux (flow rate) at the beginning of the experiment to the change in effective stress, while the differences in the microscopic properties of different gases, such as molar mass, molecular diameter, mean molecular free path, and molecular collision frequency, were ignored. To research the effect of these gas properties on seepage flux while circumventing the effective stress, coreflooding experiments with helium (He), argon (Ar), nitrogen (N2), methane (CH4), and carbon dioxide (CO2) were designed. The results show that the gas transport velocity in coal is affected by the combination of molecular collision frequency and dynamic viscosity, and the transport velocities follow the order of ν (CH4) > ν (He) > ν (N2) > ν (CO2) > ν (Ar). A permeability equation corrected by the molecular collision frequency is proposed to eliminate differences in the permeabilities measured with different gases. The adsorption of different gases on the coal matrix causes different degrees of swelling, and the adsorption-induced swelling strains follow the order of ε (CO2) > ε (CH4) > ε (N2) > ε (Ar) > ε (He). The reduction in seepage flux and irreversible alterations in pore structure caused by adsorption-induced swelling are positively correlated with their adsorption capacities. The gas seepage fluxes after adsorption equilibrium of coal follow the order of Q (He) > Q (CH4) >Q (N2) > Q (Ar) > Q (CO2). Like supercritical CO2 (ScCO2), conventional CO2 can also dissolve the organic matter in coal. The organic molecules close to the walls of the cleats along the direction of gas flow are preferentially dissolved by CO2, and the gas seepage flux increases when the dissolution effect on the cleat width is greater than that on adsorption swelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation Spatiotemporal X-Ray Imaging of Neat and Viscosified CO2 in Displacement of Brine-Saturated Porous Media Novel Resin-Coated Sand Placement Design Guidelines for Controlling Proppant Flowback Post-Slickwater Hydraulic Fracturing Treatments Study on Plugging the Multiscale Water Channeling in Low-Permeability Heterogeneous Porous Media Based on the Growth of Bacteria Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1