超越基础:深入了解高级 PBPK 和 QSP 模型的参数估计

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Drug Metabolism and Pharmacokinetics Pub Date : 2024-06-01 DOI:10.1016/j.dmpk.2024.101011
Kota Toshimoto
{"title":"超越基础:深入了解高级 PBPK 和 QSP 模型的参数估计","authors":"Kota Toshimoto","doi":"10.1016/j.dmpk.2024.101011","DOIUrl":null,"url":null,"abstract":"<div><p>Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms – the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method – using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"56 ","pages":"Article 101011"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S134743672400017X/pdfft?md5=df144f44a617f6c8d8e5f084a82d4f42&pid=1-s2.0-S134743672400017X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Beyond the basics: A deep dive into parameter estimation for advanced PBPK and QSP models\",\"authors\":\"Kota Toshimoto\",\"doi\":\"10.1016/j.dmpk.2024.101011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms – the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method – using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.</p></div>\",\"PeriodicalId\":11298,\"journal\":{\"name\":\"Drug Metabolism and Pharmacokinetics\",\"volume\":\"56 \",\"pages\":\"Article 101011\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S134743672400017X/pdfft?md5=df144f44a617f6c8d8e5f084a82d4f42&pid=1-s2.0-S134743672400017X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S134743672400017X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134743672400017X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

基于生理的药代动力学(PBPK)模型和定量系统药理学(QSP)模型为药物开发战略做出了贡献。这些模型的参数通常是通过使用非线性最小二乘法获取观察值来估算的。用于 PBPK 和 QSP 模型的软件包提供了一系列参数估计算法。要选择最合适的方法,建模者需要了解每种方法的基本概念。本综述概括介绍了参数估计的要点,重点是 PBPK 和 QSP 模型以及各自的参数估计算法。后一部分以三个 PBPK 和 QSP 模型为例,评估了准牛顿法、Nelder-Mead 法、遗传算法、粒子群优化和集群高斯-牛顿法这五种参数估计算法的性能。评估结果表明,一些参数估计结果受初始值的影响很大。此外,选择哪种算法能显示出良好的估算结果在很大程度上取决于模型结构和待估算参数等因素。为了获得可靠的参数估计结果,最好在不同条件下采用不同的估计算法进行多轮参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond the basics: A deep dive into parameter estimation for advanced PBPK and QSP models

Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms – the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method – using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
9.50%
发文量
50
审稿时长
69 days
期刊介绍: DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows: - Drug metabolism / Biotransformation - Pharmacokinetics and pharmacodynamics - Toxicokinetics and toxicodynamics - Drug-drug interaction / Drug-food interaction - Mechanism of drug absorption and disposition (including transporter) - Drug delivery system - Clinical pharmacy and pharmacology - Analytical method - Factors affecting drug metabolism and transport - Expression of genes for drug-metabolizing enzymes and transporters - Pharmacogenetics and pharmacogenomics - Pharmacoepidemiology.
期刊最新文献
Corrigendum to "Establishment of human intestinal organoids derived from commercially available cryopreserved intestinal epithelium and evaluation for pharmacokinetic study" [Drug Metabol Pharmacokinet 53 (2024) 100532]. Population pharmacokinetics of blonanserin in Japanese adolescent and adult patients with schizophrenia. Population pharmacokinetic and exposure-response analysis to support a dosing regimen of CPX-351 (NS-87) in Japanese adult and pediatric patients with untreated high-risk acute myeloid leukemia. The refined CYP2B6-Template system for studies of its ligand metabolisms. In vitro hydrolysis of areca nut xenobiotics in human liver.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1