急性低氧性呼吸衰竭中镇静与通气的相互作用:兰德马克(LANDMARK)试验的二次分析

Jose Dianti MD , Idunn S. Morris MD , Thiago G. Bassi MD, PhD , Eddy Fan MD, PhD , Arthur S. Slutsky MD , Laurent J. Brochard MD , Niall D. Ferguson MD , Ewan C. Goligher MD, PhD
{"title":"急性低氧性呼吸衰竭中镇静与通气的相互作用:兰德马克(LANDMARK)试验的二次分析","authors":"Jose Dianti MD ,&nbsp;Idunn S. Morris MD ,&nbsp;Thiago G. Bassi MD, PhD ,&nbsp;Eddy Fan MD, PhD ,&nbsp;Arthur S. Slutsky MD ,&nbsp;Laurent J. Brochard MD ,&nbsp;Niall D. Ferguson MD ,&nbsp;Ewan C. Goligher MD, PhD","doi":"10.1016/j.chstcc.2024.100067","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ventilation and sedation are used for the management of acute hypoxemic respiratory failure (AHRF), but their optimal combination to minimize the risks of ventilation is not well understood.</p></div><div><h3>Research Question</h3><p>What are the individual effects and interactions of inspiratory and positive end-expiratory pressure (PEEP), sedation, and venovenous extracorporeal membrane oxygenation (VV-ECMO) on respiratory drive, effort, and lung-distending pressure in patients with AHRF triggering the ventilator?</p></div><div><h3>Study Design and Methods</h3><p>In this secondary exploratory analysis of a trial of lung and diaphragm protection in AHRF, inspiratory pressure, sedation, PEEP, and VV-ECMO were titrated while respiratory drive (airway pressure in the first 100 ms [P<sub>0.1</sub>]), effort (esophageal pressure swing [|ΔPes|]), and lung-distending pressure (dynamic transpulmonary driving pressure [ΔP<sub>L,dyn</sub>]) were recorded. Associations were evaluated using linear mixed-effects regression models including prespecified terms for potential interactions.</p></div><div><h3>Results</h3><p>The study included 223 individual measurements of P<sub>0.1</sub> and 235 individual measurements of |ΔPes| and ΔP<sub>L,dyn</sub> from 30 patients. Propofol-attenuated P<sub>0.1</sub> (–0.4 cm H<sub>2</sub>O; 95% CI, –0.3 to –0.1 cm H<sub>2</sub>O per 10-μm/kg/min increase), |ΔPes| (–2.5 cm H<sub>2</sub>O; 95% CI, –3.4 to –1.7 cm H<sub>2</sub>O per 10-μm/kg/min increase), and ΔP<sub>L,dyn</sub> (–1.6 cm H<sub>2</sub>O; 95% CI, –2.3 to –0.8 cm H<sub>2</sub>O per 10-μm/kg/min increase). The effect of inspiratory pressure on |ΔPes| varied depending on propofol dose: with higher propofol dose, inspiratory pressure resulted in higher ΔP<sub>L,dyn</sub>. With VV-ECMO, patients (n = 16) showed significantly lower |ΔPes| (–10 cm H<sub>2</sub>O; 95% CI, –17.5 to –2.5 cm H<sub>2</sub>O) and required less sedation to reduce |ΔPes| than without VV-ECMO (n = 14).</p></div><div><h3>Interpretation</h3><p>Mechanical ventilation, sedation, and VV-ECMO exert interdependent effects on respiratory drive, effort, and lung-distending pressure in AHRF. Patients receiving VV-ECMO require less sedation to control respiratory effort.</p></div>","PeriodicalId":93934,"journal":{"name":"CHEST critical care","volume":"2 2","pages":"Article 100067"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949788424000212/pdfft?md5=f25e6e71a95a38d7f7f3ab9c096599d1&pid=1-s2.0-S2949788424000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sedation-Ventilation Interaction in Acute Hypoxemic Respiratory Failure\",\"authors\":\"Jose Dianti MD ,&nbsp;Idunn S. Morris MD ,&nbsp;Thiago G. Bassi MD, PhD ,&nbsp;Eddy Fan MD, PhD ,&nbsp;Arthur S. Slutsky MD ,&nbsp;Laurent J. Brochard MD ,&nbsp;Niall D. Ferguson MD ,&nbsp;Ewan C. Goligher MD, PhD\",\"doi\":\"10.1016/j.chstcc.2024.100067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Ventilation and sedation are used for the management of acute hypoxemic respiratory failure (AHRF), but their optimal combination to minimize the risks of ventilation is not well understood.</p></div><div><h3>Research Question</h3><p>What are the individual effects and interactions of inspiratory and positive end-expiratory pressure (PEEP), sedation, and venovenous extracorporeal membrane oxygenation (VV-ECMO) on respiratory drive, effort, and lung-distending pressure in patients with AHRF triggering the ventilator?</p></div><div><h3>Study Design and Methods</h3><p>In this secondary exploratory analysis of a trial of lung and diaphragm protection in AHRF, inspiratory pressure, sedation, PEEP, and VV-ECMO were titrated while respiratory drive (airway pressure in the first 100 ms [P<sub>0.1</sub>]), effort (esophageal pressure swing [|ΔPes|]), and lung-distending pressure (dynamic transpulmonary driving pressure [ΔP<sub>L,dyn</sub>]) were recorded. Associations were evaluated using linear mixed-effects regression models including prespecified terms for potential interactions.</p></div><div><h3>Results</h3><p>The study included 223 individual measurements of P<sub>0.1</sub> and 235 individual measurements of |ΔPes| and ΔP<sub>L,dyn</sub> from 30 patients. Propofol-attenuated P<sub>0.1</sub> (–0.4 cm H<sub>2</sub>O; 95% CI, –0.3 to –0.1 cm H<sub>2</sub>O per 10-μm/kg/min increase), |ΔPes| (–2.5 cm H<sub>2</sub>O; 95% CI, –3.4 to –1.7 cm H<sub>2</sub>O per 10-μm/kg/min increase), and ΔP<sub>L,dyn</sub> (–1.6 cm H<sub>2</sub>O; 95% CI, –2.3 to –0.8 cm H<sub>2</sub>O per 10-μm/kg/min increase). The effect of inspiratory pressure on |ΔPes| varied depending on propofol dose: with higher propofol dose, inspiratory pressure resulted in higher ΔP<sub>L,dyn</sub>. With VV-ECMO, patients (n = 16) showed significantly lower |ΔPes| (–10 cm H<sub>2</sub>O; 95% CI, –17.5 to –2.5 cm H<sub>2</sub>O) and required less sedation to reduce |ΔPes| than without VV-ECMO (n = 14).</p></div><div><h3>Interpretation</h3><p>Mechanical ventilation, sedation, and VV-ECMO exert interdependent effects on respiratory drive, effort, and lung-distending pressure in AHRF. Patients receiving VV-ECMO require less sedation to control respiratory effort.</p></div>\",\"PeriodicalId\":93934,\"journal\":{\"name\":\"CHEST critical care\",\"volume\":\"2 2\",\"pages\":\"Article 100067\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949788424000212/pdfft?md5=f25e6e71a95a38d7f7f3ab9c096599d1&pid=1-s2.0-S2949788424000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CHEST critical care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949788424000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CHEST critical care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949788424000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究问题吸气和呼气末正压(PEEP)、镇静和静脉体外膜肺氧合(VV-ECMO)对触发呼吸机的急性低氧血症呼吸衰竭(AHRF)患者的呼吸驱动力、用力和肺舒张压有哪些单独影响和相互作用?研究设计和方法在这项对 AHRF 肺和膈肌保护试验的二次探索性分析中,对吸气压力、镇静剂、PEEP 和 VV-ECMO 进行了滴定,同时记录了呼吸驱动力(前 100 毫秒的气道压力 [P0.1])、用力(食管压力摆动 [|ΔPes|])和肺舒张压(动态跨肺驱动压力 [ΔPL,dyn])。采用线性混合效应回归模型对相关性进行了评估,该模型包括针对潜在交互作用的预设项。丙泊酚可降低 P0.1(-0.4 cm H2O;95% CI,每增加 10-μm/kg/min 降低-0.3 至-0.1 cm H2O)、|ΔPes|(-2.5 cm H2O;95% CI,每增加 10-μm/kg/min 降低-3.4 至-1.7 cm H2O)和 ΔPL,dyn(-1.6 cm H2O;95% CI,每增加 10-μm/kg/min 降低-2.3 至-0.8 cm H2O)。吸气压力对|ΔPes|的影响因丙泊酚剂量而异:丙泊酚剂量越高,吸气压力导致的ΔPL,dyn越高。与未接受 VV-ECMO 的患者(n = 14)相比,接受 VV-ECMO 的患者(n = 16)的|ΔPes|(-10 cm H2O; 95% CI, -17.5 to -2.5 cm H2O)明显降低,并且需要更少的镇静剂来降低|ΔPes|。接受 VV-ECMO 的患者需要较少的镇静剂来控制呼吸强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sedation-Ventilation Interaction in Acute Hypoxemic Respiratory Failure

Background

Ventilation and sedation are used for the management of acute hypoxemic respiratory failure (AHRF), but their optimal combination to minimize the risks of ventilation is not well understood.

Research Question

What are the individual effects and interactions of inspiratory and positive end-expiratory pressure (PEEP), sedation, and venovenous extracorporeal membrane oxygenation (VV-ECMO) on respiratory drive, effort, and lung-distending pressure in patients with AHRF triggering the ventilator?

Study Design and Methods

In this secondary exploratory analysis of a trial of lung and diaphragm protection in AHRF, inspiratory pressure, sedation, PEEP, and VV-ECMO were titrated while respiratory drive (airway pressure in the first 100 ms [P0.1]), effort (esophageal pressure swing [|ΔPes|]), and lung-distending pressure (dynamic transpulmonary driving pressure [ΔPL,dyn]) were recorded. Associations were evaluated using linear mixed-effects regression models including prespecified terms for potential interactions.

Results

The study included 223 individual measurements of P0.1 and 235 individual measurements of |ΔPes| and ΔPL,dyn from 30 patients. Propofol-attenuated P0.1 (–0.4 cm H2O; 95% CI, –0.3 to –0.1 cm H2O per 10-μm/kg/min increase), |ΔPes| (–2.5 cm H2O; 95% CI, –3.4 to –1.7 cm H2O per 10-μm/kg/min increase), and ΔPL,dyn (–1.6 cm H2O; 95% CI, –2.3 to –0.8 cm H2O per 10-μm/kg/min increase). The effect of inspiratory pressure on |ΔPes| varied depending on propofol dose: with higher propofol dose, inspiratory pressure resulted in higher ΔPL,dyn. With VV-ECMO, patients (n = 16) showed significantly lower |ΔPes| (–10 cm H2O; 95% CI, –17.5 to –2.5 cm H2O) and required less sedation to reduce |ΔPes| than without VV-ECMO (n = 14).

Interpretation

Mechanical ventilation, sedation, and VV-ECMO exert interdependent effects on respiratory drive, effort, and lung-distending pressure in AHRF. Patients receiving VV-ECMO require less sedation to control respiratory effort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CHEST critical care
CHEST critical care Critical Care and Intensive Care Medicine, Pulmonary and Respiratory Medicine
自引率
0.00%
发文量
0
期刊最新文献
Innovation and Adaptation in COVID-19 Pandemic Posthospital Discharge Contact and Monitoring in the United States Analytical Accuracy of a Continuous Glucose Monitor in Adult Diabetic Ketoacidosis Silent Burdens Prevalence of Inpatient Pulse Oximetry in Operative and Nonoperative Settings Operationalizing the New Global Definition of ARDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1