优化降解塑料密度预测:从粗到细的深度神经网络方法

IF 0.7 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Sains Malaysiana Pub Date : 2024-02-29 DOI:10.17576/jsm-2024-5302-17
Syamsiah Abu Bakar, S. Hussain, Zirour Mourad
{"title":"优化降解塑料密度预测:从粗到细的深度神经网络方法","authors":"Syamsiah Abu Bakar, S. Hussain, Zirour Mourad","doi":"10.17576/jsm-2024-5302-17","DOIUrl":null,"url":null,"abstract":"Density is an important property for the production of high-quality degradable plastics. Density is useful to determine the type of plastic material and to detect physical changes in the plastic material. In this paper, a novel technique for predicting the density of degradable plastics using Deep Neural Networks (DNN) is presented. The aim was to reduce the dimension of the inputs in order to establish a strong relationship between the inputs using principal component analysis (PCA). The results show that the combination of polyethylene, oil palm biomass, starch and palm oil has a greater impact on predicting the density of degradable plastics. Subsequently, the number of hidden neurons is determined by a coarse-to-fine search to develop the network topology of the DNN model for predicting the density of degradable plastics. The developed DNN model consists of 4 input neurons, 62 neurons in the first hidden layer, 31 neurons in the second hidden layer and one output neuron. The developed DNN model showed high accuracy with the lowest values for RMSE, MAE and MSE, indicating that the use of a DNN model is a suitable method for predicting the density of degradable plastics. Furthermore, this study has the potential to make rapid and accurate predictions about the physical properties of degradable plastics in the context of polymers.","PeriodicalId":21366,"journal":{"name":"Sains Malaysiana","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Degradable Plastic Density Prediction: A Coarse-to-Fine Deep Neural Network Approach\",\"authors\":\"Syamsiah Abu Bakar, S. Hussain, Zirour Mourad\",\"doi\":\"10.17576/jsm-2024-5302-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density is an important property for the production of high-quality degradable plastics. Density is useful to determine the type of plastic material and to detect physical changes in the plastic material. In this paper, a novel technique for predicting the density of degradable plastics using Deep Neural Networks (DNN) is presented. The aim was to reduce the dimension of the inputs in order to establish a strong relationship between the inputs using principal component analysis (PCA). The results show that the combination of polyethylene, oil palm biomass, starch and palm oil has a greater impact on predicting the density of degradable plastics. Subsequently, the number of hidden neurons is determined by a coarse-to-fine search to develop the network topology of the DNN model for predicting the density of degradable plastics. The developed DNN model consists of 4 input neurons, 62 neurons in the first hidden layer, 31 neurons in the second hidden layer and one output neuron. The developed DNN model showed high accuracy with the lowest values for RMSE, MAE and MSE, indicating that the use of a DNN model is a suitable method for predicting the density of degradable plastics. Furthermore, this study has the potential to make rapid and accurate predictions about the physical properties of degradable plastics in the context of polymers.\",\"PeriodicalId\":21366,\"journal\":{\"name\":\"Sains Malaysiana\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains Malaysiana\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.17576/jsm-2024-5302-17\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Malaysiana","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17576/jsm-2024-5302-17","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

密度是生产高质量可降解塑料的一项重要属性。密度有助于确定塑料材料的类型和检测塑料材料的物理变化。本文介绍了一种利用深度神经网络(DNN)预测可降解塑料密度的新技术。其目的是减少输入的维度,以便利用主成分分析(PCA)在输入之间建立牢固的关系。结果表明,聚乙烯、油棕生物质、淀粉和棕榈油的组合对预测可降解塑料的密度有较大影响。随后,通过从粗到细的搜索确定了隐藏神经元的数量,从而建立了用于预测可降解塑料密度的 DNN 模型的网络拓扑结构。所开发的 DNN 模型由 4 个输入神经元、62 个第一隐层神经元、31 个第二隐层神经元和 1 个输出神经元组成。所开发的 DNN 模型显示出较高的精确度,其 RMSE、MAE 和 MSE 值均为最低,表明使用 DNN 模型是预测可降解塑料密度的合适方法。此外,这项研究还有可能在聚合物方面快速准确地预测可降解塑料的物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Degradable Plastic Density Prediction: A Coarse-to-Fine Deep Neural Network Approach
Density is an important property for the production of high-quality degradable plastics. Density is useful to determine the type of plastic material and to detect physical changes in the plastic material. In this paper, a novel technique for predicting the density of degradable plastics using Deep Neural Networks (DNN) is presented. The aim was to reduce the dimension of the inputs in order to establish a strong relationship between the inputs using principal component analysis (PCA). The results show that the combination of polyethylene, oil palm biomass, starch and palm oil has a greater impact on predicting the density of degradable plastics. Subsequently, the number of hidden neurons is determined by a coarse-to-fine search to develop the network topology of the DNN model for predicting the density of degradable plastics. The developed DNN model consists of 4 input neurons, 62 neurons in the first hidden layer, 31 neurons in the second hidden layer and one output neuron. The developed DNN model showed high accuracy with the lowest values for RMSE, MAE and MSE, indicating that the use of a DNN model is a suitable method for predicting the density of degradable plastics. Furthermore, this study has the potential to make rapid and accurate predictions about the physical properties of degradable plastics in the context of polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sains Malaysiana
Sains Malaysiana MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
12.50%
发文量
196
审稿时长
3-6 weeks
期刊介绍: Sains Malaysiana is a refereed journal committed to the advancement of scholarly knowledge and research findings of the several branches of science and technology. It contains articles on Earth Sciences, Health Sciences, Life Sciences, Mathematical Sciences and Physical Sciences. The journal publishes articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. Sains Malaysiana is published by the UKM Press an its autonomous Editorial Board are drawn from the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. In addition, distinguished scholars from local and foreign universities are appointed to serve as advisory board members and referees.
期刊最新文献
Machine Learning for Mapping and Forecasting Poverty in North Sumatera: A Data-Driven Approach Inhibition of Pre-Emergent Herbicide on Weedy Rice under Flooded and Saturated Soil Conditions in Rice Imobilisasi Nanopartikel Ag/TiO2 Ekstrak Beko pada Membran Fotomangkin Poliakrilonitril (PAN) untuk Penyingkiran Pewarna Metilena Biru Antarctic Spore-Forming Microorganisms from Deception Island Inhibit the Growth of Various Bacterial Strains Peranan Saiz Zarah Nano Zink Oksida Dalam Prestasi Pemangkinan Foto, Perencatan Bakteria dan Ketoksikan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1