{"title":"基于深度学习的城市地区短期用水需求预测:混合多通道模型","authors":"Hossein Namdari, S. M. Ashrafi, Ali Haghighi","doi":"10.2166/aqua.2024.200","DOIUrl":null,"url":null,"abstract":"\n \n Forecasting short-term water demands is one of the most critical needs of operating companies of urban water distribution networks. Water demands have a time series nature, and various factors affect their variations and patterns, which make it difficult to forecast. In this study, we first implemented a hybrid model of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to forecast urban water demand. These models include a combination of CNN with simple RNN (CNN-Simple RNN), CNN with the gate recurrent unit (CNN-GRU), and CNN with the long short-term memory. Then, we increased the number of CNN channels to achieve higher accuracy. The accuracy of the models increased with the number of CNN channels up to four. The evaluation metrics show that the CNN-GRU model is superior to other models. Ultimately, the four-channel CNN-GRU model demonstrated the highest accuracy, achieving a mean absolute percentage error (MAPE) of 1.65% for a 24-h forecasting horizon. The effects of the forecast horizon on the accuracy of the results were also investigated. The results show that the MAPE for a 1-h forecast horizon is 1.06% in four-channel CNN-GRU, and its value decreases with the amount of the forecast horizon.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"376 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning–based short-term water demand forecasting in urban areas: a hybrid multichannel model\",\"authors\":\"Hossein Namdari, S. M. Ashrafi, Ali Haghighi\",\"doi\":\"10.2166/aqua.2024.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Forecasting short-term water demands is one of the most critical needs of operating companies of urban water distribution networks. Water demands have a time series nature, and various factors affect their variations and patterns, which make it difficult to forecast. In this study, we first implemented a hybrid model of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to forecast urban water demand. These models include a combination of CNN with simple RNN (CNN-Simple RNN), CNN with the gate recurrent unit (CNN-GRU), and CNN with the long short-term memory. Then, we increased the number of CNN channels to achieve higher accuracy. The accuracy of the models increased with the number of CNN channels up to four. The evaluation metrics show that the CNN-GRU model is superior to other models. Ultimately, the four-channel CNN-GRU model demonstrated the highest accuracy, achieving a mean absolute percentage error (MAPE) of 1.65% for a 24-h forecasting horizon. The effects of the forecast horizon on the accuracy of the results were also investigated. The results show that the MAPE for a 1-h forecast horizon is 1.06% in four-channel CNN-GRU, and its value decreases with the amount of the forecast horizon.\",\"PeriodicalId\":513288,\"journal\":{\"name\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"volume\":\"376 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2024.200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning–based short-term water demand forecasting in urban areas: a hybrid multichannel model
Forecasting short-term water demands is one of the most critical needs of operating companies of urban water distribution networks. Water demands have a time series nature, and various factors affect their variations and patterns, which make it difficult to forecast. In this study, we first implemented a hybrid model of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to forecast urban water demand. These models include a combination of CNN with simple RNN (CNN-Simple RNN), CNN with the gate recurrent unit (CNN-GRU), and CNN with the long short-term memory. Then, we increased the number of CNN channels to achieve higher accuracy. The accuracy of the models increased with the number of CNN channels up to four. The evaluation metrics show that the CNN-GRU model is superior to other models. Ultimately, the four-channel CNN-GRU model demonstrated the highest accuracy, achieving a mean absolute percentage error (MAPE) of 1.65% for a 24-h forecasting horizon. The effects of the forecast horizon on the accuracy of the results were also investigated. The results show that the MAPE for a 1-h forecast horizon is 1.06% in four-channel CNN-GRU, and its value decreases with the amount of the forecast horizon.