影响食品粉末流动性的因素

Powders Pub Date : 2024-02-28 DOI:10.3390/powders3010006
R. Suhag, Abdessamie Kellil, Mutasem Razem
{"title":"影响食品粉末流动性的因素","authors":"R. Suhag, Abdessamie Kellil, Mutasem Razem","doi":"10.3390/powders3010006","DOIUrl":null,"url":null,"abstract":"The flowability of food powders is a critical determinant of their processing efficiency, product quality, and overall operational success. This review delves into the intricacies of powder flowability, elucidating the factors that govern it and exploring various methods for its evaluation and enhancement. Particle size and distribution, particle shape, surface properties, moisture content, and storage conditions stand as the key determinants of powder flowability. Finer powders, with their increased interparticle cohesive forces, tend to exhibit poorer flowability. Particle shape also plays a role, with irregular or elongated particles flowing less readily than spherical ones. Surface properties influence interparticle friction, thereby impacting flow behavior. Moisture content significantly affects flowability, as increased moisture can lead to liquid bridge formation, hindering powder movement. Storage temperature, on the other hand, generally enhances powder flow due to reduced interparticle cohesive forces at higher temperatures. This highlights the need to understand the factors influencing food powder flowability and to employ appropriate evaluation strategies for optimizing food powder processing efficiency, product quality, and overall production success.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"79 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors Influencing Food Powder Flowability\",\"authors\":\"R. Suhag, Abdessamie Kellil, Mutasem Razem\",\"doi\":\"10.3390/powders3010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flowability of food powders is a critical determinant of their processing efficiency, product quality, and overall operational success. This review delves into the intricacies of powder flowability, elucidating the factors that govern it and exploring various methods for its evaluation and enhancement. Particle size and distribution, particle shape, surface properties, moisture content, and storage conditions stand as the key determinants of powder flowability. Finer powders, with their increased interparticle cohesive forces, tend to exhibit poorer flowability. Particle shape also plays a role, with irregular or elongated particles flowing less readily than spherical ones. Surface properties influence interparticle friction, thereby impacting flow behavior. Moisture content significantly affects flowability, as increased moisture can lead to liquid bridge formation, hindering powder movement. Storage temperature, on the other hand, generally enhances powder flow due to reduced interparticle cohesive forces at higher temperatures. This highlights the need to understand the factors influencing food powder flowability and to employ appropriate evaluation strategies for optimizing food powder processing efficiency, product quality, and overall production success.\",\"PeriodicalId\":507225,\"journal\":{\"name\":\"Powders\",\"volume\":\"79 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/powders3010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/powders3010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

食品粉末的流动性是决定其加工效率、产品质量和整体运营成功与否的关键因素。本综述深入探讨了粉末流动性的复杂性,阐明了影响粉末流动性的各种因素,并探讨了评估和提高粉末流动性的各种方法。颗粒大小和分布、颗粒形状、表面特性、含水量和储存条件是决定粉末流动性的关键因素。粉末越细,颗粒间的内聚力越大,流动性就越差。颗粒形状也有影响,不规则或拉长的颗粒比球形颗粒更不容易流动。表面特性会影响颗粒间的摩擦力,从而影响流动性。水分含量对流动性有很大影响,因为水分增加会导致液桥的形成,阻碍粉末的流动。另一方面,贮存温度通常会增强粉末的流动性,因为在较高温度下颗粒间的内聚力会减小。这凸显了了解影响食品粉末流动性的因素并采用适当的评估策略以优化食品粉末加工效率、产品质量和整体生产成功率的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors Influencing Food Powder Flowability
The flowability of food powders is a critical determinant of their processing efficiency, product quality, and overall operational success. This review delves into the intricacies of powder flowability, elucidating the factors that govern it and exploring various methods for its evaluation and enhancement. Particle size and distribution, particle shape, surface properties, moisture content, and storage conditions stand as the key determinants of powder flowability. Finer powders, with their increased interparticle cohesive forces, tend to exhibit poorer flowability. Particle shape also plays a role, with irregular or elongated particles flowing less readily than spherical ones. Surface properties influence interparticle friction, thereby impacting flow behavior. Moisture content significantly affects flowability, as increased moisture can lead to liquid bridge formation, hindering powder movement. Storage temperature, on the other hand, generally enhances powder flow due to reduced interparticle cohesive forces at higher temperatures. This highlights the need to understand the factors influencing food powder flowability and to employ appropriate evaluation strategies for optimizing food powder processing efficiency, product quality, and overall production success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractionation of Aerosols by Particle Size and Material Composition Using a Classifying Aerodynamic Lens Discrete Element Method Simulation of Particulate Material Fracture Behavior on a Stretchable Single Filter Fiber with Additional Gas Flow Consistency in Young’s Modulus of Powders: A Review with Experiments Size and Shape Selective Classification of Nanoparticles Multidimensional Separation by Magnetic Seeded Filtration: Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1