通过 AI/ML 革新监管报告:提高合规性和效率的方法

Harish Padmanaban
{"title":"通过 AI/ML 革新监管报告:提高合规性和效率的方法","authors":"Harish Padmanaban","doi":"10.60087/jaigs.v2i1.p69","DOIUrl":null,"url":null,"abstract":"In the intricate regulatory landscape of today, financial institutions encounter formidable hurdles in meeting reporting mandates while upholding operational efficacy. This study delves into the transformative capacity of Artificial Intelligence (AI) and Machine Learning (ML) technologies in refining regulatory reporting procedures. Through harnessing AI/ML, entities can streamline data aggregation, analysis, and submission, thus fostering enhanced compliance and operational efficiency. Key strategies for integrating AI/ML into regulatory reporting frameworks are discussed, encompassing data standardization, predictive analytics, anomaly detection, and automation. Furthermore, the paper explores the advantages, obstacles, and optimal approaches associated with deploying AI/ML solutions in regulatory reporting. Drawing on real-world illustrations and case studies, this study offers insights into how AI/ML technologies can redefine regulatory reporting practices, empowering financial institutions to adeptly navigate regulatory intricacies while optimizing resource allocation and decision-making processes.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Regulatory Reporting through AI/ML: Approaches for Enhanced Compliance and Efficiency\",\"authors\":\"Harish Padmanaban\",\"doi\":\"10.60087/jaigs.v2i1.p69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the intricate regulatory landscape of today, financial institutions encounter formidable hurdles in meeting reporting mandates while upholding operational efficacy. This study delves into the transformative capacity of Artificial Intelligence (AI) and Machine Learning (ML) technologies in refining regulatory reporting procedures. Through harnessing AI/ML, entities can streamline data aggregation, analysis, and submission, thus fostering enhanced compliance and operational efficiency. Key strategies for integrating AI/ML into regulatory reporting frameworks are discussed, encompassing data standardization, predictive analytics, anomaly detection, and automation. Furthermore, the paper explores the advantages, obstacles, and optimal approaches associated with deploying AI/ML solutions in regulatory reporting. Drawing on real-world illustrations and case studies, this study offers insights into how AI/ML technologies can redefine regulatory reporting practices, empowering financial institutions to adeptly navigate regulatory intricacies while optimizing resource allocation and decision-making processes.\",\"PeriodicalId\":517201,\"journal\":{\"name\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60087/jaigs.v2i1.p69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v2i1.p69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今错综复杂的监管环境中,金融机构在满足报告要求的同时还要保持运营效率,会遇到巨大的障碍。本研究深入探讨了人工智能(AI)和机器学习(ML)技术在完善监管报告程序方面的变革能力。通过利用人工智能/ML,实体可简化数据汇总、分析和提交,从而提高合规性和运营效率。本文讨论了将人工智能/ML 纳入监管报告框架的关键策略,包括数据标准化、预测分析、异常检测和自动化。此外,本文还探讨了在监管报告中部署人工智能/ML 解决方案的优势、障碍和最佳方法。本研究借鉴现实世界的图示和案例研究,深入探讨了人工智能/ML 技术如何重新定义监管报告实践,使金融机构能够在优化资源分配和决策过程的同时,巧妙地驾驭错综复杂的监管问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revolutionizing Regulatory Reporting through AI/ML: Approaches for Enhanced Compliance and Efficiency
In the intricate regulatory landscape of today, financial institutions encounter formidable hurdles in meeting reporting mandates while upholding operational efficacy. This study delves into the transformative capacity of Artificial Intelligence (AI) and Machine Learning (ML) technologies in refining regulatory reporting procedures. Through harnessing AI/ML, entities can streamline data aggregation, analysis, and submission, thus fostering enhanced compliance and operational efficiency. Key strategies for integrating AI/ML into regulatory reporting frameworks are discussed, encompassing data standardization, predictive analytics, anomaly detection, and automation. Furthermore, the paper explores the advantages, obstacles, and optimal approaches associated with deploying AI/ML solutions in regulatory reporting. Drawing on real-world illustrations and case studies, this study offers insights into how AI/ML technologies can redefine regulatory reporting practices, empowering financial institutions to adeptly navigate regulatory intricacies while optimizing resource allocation and decision-making processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1