基于物联网的工业交流感应电机健康监测和故障检测,实现高效预测性维护

Muhammad Yousuf, Turki Alsuwian, Arslan Ahmed Amin, Sanwal Fareed, Muhammad Hamza
{"title":"基于物联网的工业交流感应电机健康监测和故障检测,实现高效预测性维护","authors":"Muhammad Yousuf, Turki Alsuwian, Arslan Ahmed Amin, Sanwal Fareed, Muhammad Hamza","doi":"10.1177/00202940241231473","DOIUrl":null,"url":null,"abstract":"This research paper presents the development and implementation of an integrated condition monitoring and fault detection system for AC induction motors using a combination of sensors, GSM communication, and a cloud-based Internet of Things (IoT) platform. The proposed system aims to enhance industrial motors’ operational reliability and efficiency by providing real-time data monitoring and early fault detection. The key components of the system include temperature, vibration, current, voltage, and speed sensors, which are strategically placed to gather critical motor performance data. These sensors feed data to an Arduino-based control unit responsible for sensor data acquisition and processing. To ensure timely response to anomalies, the system is equipped with an alarm system and GSM alerts, which notify designated personnel in case of abnormal motor behavior. Moreover, the paper incorporates remote monitoring capabilities, enabling users to access motor health data and real-time status from a distance. Historical data is also stored for analysis and comparison through the integration of a cloud-based Blynk-IoT platform. Additionally, the system facilitates RPM control and utilizes relay modules for seamless motor control and protection. The proposed system was tested and validated using Proteus for circuit diagram simulation and Arduino for sensor coding. The results demonstrate its effectiveness in detecting abnormal motor behavior and its potential to prevent catastrophic failures by enabling predictive maintenance. The proposed system successfully detects and displays abnormalities in important parameters like vibration, temperature, speed, three-phase currents, and voltages with 99% accuracy.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"8 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance\",\"authors\":\"Muhammad Yousuf, Turki Alsuwian, Arslan Ahmed Amin, Sanwal Fareed, Muhammad Hamza\",\"doi\":\"10.1177/00202940241231473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper presents the development and implementation of an integrated condition monitoring and fault detection system for AC induction motors using a combination of sensors, GSM communication, and a cloud-based Internet of Things (IoT) platform. The proposed system aims to enhance industrial motors’ operational reliability and efficiency by providing real-time data monitoring and early fault detection. The key components of the system include temperature, vibration, current, voltage, and speed sensors, which are strategically placed to gather critical motor performance data. These sensors feed data to an Arduino-based control unit responsible for sensor data acquisition and processing. To ensure timely response to anomalies, the system is equipped with an alarm system and GSM alerts, which notify designated personnel in case of abnormal motor behavior. Moreover, the paper incorporates remote monitoring capabilities, enabling users to access motor health data and real-time status from a distance. Historical data is also stored for analysis and comparison through the integration of a cloud-based Blynk-IoT platform. Additionally, the system facilitates RPM control and utilizes relay modules for seamless motor control and protection. The proposed system was tested and validated using Proteus for circuit diagram simulation and Arduino for sensor coding. The results demonstrate its effectiveness in detecting abnormal motor behavior and its potential to prevent catastrophic failures by enabling predictive maintenance. The proposed system successfully detects and displays abnormalities in important parameters like vibration, temperature, speed, three-phase currents, and voltages with 99% accuracy.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940241231473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241231473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文介绍了利用传感器、GSM 通信和基于云的物联网(IoT)平台,为交流感应电机开发和实施一个集成的状态监测和故障检测系统。该系统旨在通过提供实时数据监控和早期故障检测,提高工业电机的运行可靠性和效率。系统的关键组件包括温度、振动、电流、电压和速度传感器,这些传感器被战略性地放置在收集关键电机性能数据的位置。这些传感器将数据传送到一个基于 Arduino 的控制单元,该单元负责传感器数据的采集和处理。为确保及时应对异常情况,该系统配备了报警系统和 GSM 警报,在电机行为异常时通知指定人员。此外,本文还集成了远程监控功能,使用户能够远程访问电机健康数据和实时状态。通过集成基于云的 Blynk 物联网平台,还可存储历史数据以供分析和比较。此外,该系统还有助于转速控制,并利用继电器模块实现无缝电机控制和保护。使用 Proteus 进行电路图仿真,使用 Arduino 进行传感器编码,对所提议的系统进行了测试和验证。结果表明,该系统能有效检测异常电机行为,并能通过预测性维护防止灾难性故障的发生。拟议的系统成功地检测并显示了振动、温度、速度、三相电流和电压等重要参数的异常,准确率达到 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance
This research paper presents the development and implementation of an integrated condition monitoring and fault detection system for AC induction motors using a combination of sensors, GSM communication, and a cloud-based Internet of Things (IoT) platform. The proposed system aims to enhance industrial motors’ operational reliability and efficiency by providing real-time data monitoring and early fault detection. The key components of the system include temperature, vibration, current, voltage, and speed sensors, which are strategically placed to gather critical motor performance data. These sensors feed data to an Arduino-based control unit responsible for sensor data acquisition and processing. To ensure timely response to anomalies, the system is equipped with an alarm system and GSM alerts, which notify designated personnel in case of abnormal motor behavior. Moreover, the paper incorporates remote monitoring capabilities, enabling users to access motor health data and real-time status from a distance. Historical data is also stored for analysis and comparison through the integration of a cloud-based Blynk-IoT platform. Additionally, the system facilitates RPM control and utilizes relay modules for seamless motor control and protection. The proposed system was tested and validated using Proteus for circuit diagram simulation and Arduino for sensor coding. The results demonstrate its effectiveness in detecting abnormal motor behavior and its potential to prevent catastrophic failures by enabling predictive maintenance. The proposed system successfully detects and displays abnormalities in important parameters like vibration, temperature, speed, three-phase currents, and voltages with 99% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating math education in reducing math anxiety with the help of Data Envelopment Analysis Optimal control technique applied to the minimization of uncertainty measurements in surveying instruments Development of motion control function library based on PLCopen specification Tillage depth dynamic monitoring and precise control system Semantic mapping techniques for indoor mobile robots: Review and prospect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1