{"title":"关于三角函数的均值不等式","authors":"K. Nantomah, G. Abe-I-Kpeng, Sunday Sandow","doi":"10.3126/jnms.v6i2.63030","DOIUrl":null,"url":null,"abstract":"Let G(α, β), A(α, β) and H(α, β), respectively, be the geometric mean, arithmetic mean and harmonic mean of α and β. In this paper, we prove that G(ψ′ (z), ψ′ (1/z)) ≥ π2/6, A(ψ′ (z), ψ′ (1/z)) ≥ π2/6 and H(ψ′ (z), ψ′ (1/z)) ≤ π2/6. This extends the previous results of Alzer and Jameson regarding the digamma function ψ. The mathematical tools used to prove the results include convexity, concavity and monotonicity properties of certain functions as well as the convolution theorem for Laplace transforms.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"39 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for Means Regarding the Trigamma Function\",\"authors\":\"K. Nantomah, G. Abe-I-Kpeng, Sunday Sandow\",\"doi\":\"10.3126/jnms.v6i2.63030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G(α, β), A(α, β) and H(α, β), respectively, be the geometric mean, arithmetic mean and harmonic mean of α and β. In this paper, we prove that G(ψ′ (z), ψ′ (1/z)) ≥ π2/6, A(ψ′ (z), ψ′ (1/z)) ≥ π2/6 and H(ψ′ (z), ψ′ (1/z)) ≤ π2/6. This extends the previous results of Alzer and Jameson regarding the digamma function ψ. The mathematical tools used to prove the results include convexity, concavity and monotonicity properties of certain functions as well as the convolution theorem for Laplace transforms.\",\"PeriodicalId\":401623,\"journal\":{\"name\":\"Journal of Nepal Mathematical Society\",\"volume\":\"39 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jnms.v6i2.63030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v6i2.63030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inequalities for Means Regarding the Trigamma Function
Let G(α, β), A(α, β) and H(α, β), respectively, be the geometric mean, arithmetic mean and harmonic mean of α and β. In this paper, we prove that G(ψ′ (z), ψ′ (1/z)) ≥ π2/6, A(ψ′ (z), ψ′ (1/z)) ≥ π2/6 and H(ψ′ (z), ψ′ (1/z)) ≤ π2/6. This extends the previous results of Alzer and Jameson regarding the digamma function ψ. The mathematical tools used to prove the results include convexity, concavity and monotonicity properties of certain functions as well as the convolution theorem for Laplace transforms.