{"title":"TriChain:基于袋鼠的入侵检测,使用高级路由协议实现城域网中的安全多路径路由发现和路由维护","authors":"J. A. Rathod, Manjunath Kotari","doi":"10.22247/ijcna/2024/224436","DOIUrl":null,"url":null,"abstract":"– Several practical applications are combined in a new paradigm known as 5G-based mobile ad hoc networks (MANET) with cloud. Numerous existing works perform trust assessment, intrusion detection, and route discovery to improve secure data transmission in MANET. Route maintenance was not carried out in several of the existing works, and the absence of enumerating link status and node reliability during route maintenance results in link failure and increases packet loss. By considering the existing issues, a novel Kangaroo-based intrusion detection system was proposed to eliminate malicious nodes from the network using Bidirectional-Long Short-Term Memory (Bi-LSTM). This increases data transmission security. For graphical user authentication, encryption based on ASCII values of the Reflection tree (E-ART algorithm) is employed. In this paper, a divide well merge algorithm was implemented, which is a better approach for hierarchical clustering. This method consists of two phases: a Division and Merging phase. The effective route identification and route maintenance in MANET are implemented by using an Advanced Ad-hoc On-demand Distance Vector Protocol (Advanced AODV), which discovers the route using the Fire Hawk Optimization Algorithm (FHO) to obtain optimal multipath by contemplating trust, node connectivity, throughput, node degree, bandwidth, energy and distance where this protocol offers loop-free operation and enhance its scalability to numerous numbers of terminals. In this way, route discovery and route maintenance are established to enhance secure data transmission, thereby reducing packet loss. The modified blockchain called TriChain is proposed for enhancing data transmission security. For the Proof of Work based on Reputation (PoWR) consensus algorithm is used to reduce transaction confirmation latency and block creation time thereby increasing security. In this way, route discovery and route maintenance are established to enhance secure data transmission thereby reducing packet loss. The proposed work is evaluated using detection rate, energy consumption, packet delivery rate, throughput, authentication rate and delay.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":"42 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TriChain: Kangaroo-Based Intrusion Detection for Secure Multipath Route Discovery and Route Maintenance in MANET Using Advanced Routing Protocol\",\"authors\":\"J. A. Rathod, Manjunath Kotari\",\"doi\":\"10.22247/ijcna/2024/224436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– Several practical applications are combined in a new paradigm known as 5G-based mobile ad hoc networks (MANET) with cloud. Numerous existing works perform trust assessment, intrusion detection, and route discovery to improve secure data transmission in MANET. Route maintenance was not carried out in several of the existing works, and the absence of enumerating link status and node reliability during route maintenance results in link failure and increases packet loss. By considering the existing issues, a novel Kangaroo-based intrusion detection system was proposed to eliminate malicious nodes from the network using Bidirectional-Long Short-Term Memory (Bi-LSTM). This increases data transmission security. For graphical user authentication, encryption based on ASCII values of the Reflection tree (E-ART algorithm) is employed. In this paper, a divide well merge algorithm was implemented, which is a better approach for hierarchical clustering. This method consists of two phases: a Division and Merging phase. The effective route identification and route maintenance in MANET are implemented by using an Advanced Ad-hoc On-demand Distance Vector Protocol (Advanced AODV), which discovers the route using the Fire Hawk Optimization Algorithm (FHO) to obtain optimal multipath by contemplating trust, node connectivity, throughput, node degree, bandwidth, energy and distance where this protocol offers loop-free operation and enhance its scalability to numerous numbers of terminals. In this way, route discovery and route maintenance are established to enhance secure data transmission, thereby reducing packet loss. The modified blockchain called TriChain is proposed for enhancing data transmission security. For the Proof of Work based on Reputation (PoWR) consensus algorithm is used to reduce transaction confirmation latency and block creation time thereby increasing security. In this way, route discovery and route maintenance are established to enhance secure data transmission thereby reducing packet loss. The proposed work is evaluated using detection rate, energy consumption, packet delivery rate, throughput, authentication rate and delay.\",\"PeriodicalId\":36485,\"journal\":{\"name\":\"International Journal of Computer Networks and Applications\",\"volume\":\"42 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22247/ijcna/2024/224436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2024/224436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
TriChain: Kangaroo-Based Intrusion Detection for Secure Multipath Route Discovery and Route Maintenance in MANET Using Advanced Routing Protocol
– Several practical applications are combined in a new paradigm known as 5G-based mobile ad hoc networks (MANET) with cloud. Numerous existing works perform trust assessment, intrusion detection, and route discovery to improve secure data transmission in MANET. Route maintenance was not carried out in several of the existing works, and the absence of enumerating link status and node reliability during route maintenance results in link failure and increases packet loss. By considering the existing issues, a novel Kangaroo-based intrusion detection system was proposed to eliminate malicious nodes from the network using Bidirectional-Long Short-Term Memory (Bi-LSTM). This increases data transmission security. For graphical user authentication, encryption based on ASCII values of the Reflection tree (E-ART algorithm) is employed. In this paper, a divide well merge algorithm was implemented, which is a better approach for hierarchical clustering. This method consists of two phases: a Division and Merging phase. The effective route identification and route maintenance in MANET are implemented by using an Advanced Ad-hoc On-demand Distance Vector Protocol (Advanced AODV), which discovers the route using the Fire Hawk Optimization Algorithm (FHO) to obtain optimal multipath by contemplating trust, node connectivity, throughput, node degree, bandwidth, energy and distance where this protocol offers loop-free operation and enhance its scalability to numerous numbers of terminals. In this way, route discovery and route maintenance are established to enhance secure data transmission, thereby reducing packet loss. The modified blockchain called TriChain is proposed for enhancing data transmission security. For the Proof of Work based on Reputation (PoWR) consensus algorithm is used to reduce transaction confirmation latency and block creation time thereby increasing security. In this way, route discovery and route maintenance are established to enhance secure data transmission thereby reducing packet loss. The proposed work is evaluated using detection rate, energy consumption, packet delivery rate, throughput, authentication rate and delay.