光注入量子点激光器及其复杂动力学

Tahani Adil Kareem, H. A. Al Husseini
{"title":"光注入量子点激光器及其复杂动力学","authors":"Tahani Adil Kareem, H. A. Al Husseini","doi":"10.1515/joc-2024-0010","DOIUrl":null,"url":null,"abstract":"\n Lasers are paradigmatic examples of nonlinear systems and have played a crucial role in developing nonlinear dynamics into an interdisciplinary topic. Indeed, a freely operating laser represents a nontrivial system, but the phenomena that occur are much more interesting when the laser is exposed to external factors such as optical feedback (OFB) and optical injection (OI). This paper deals with the analysis of the dynamic behavior of a quantum dot semiconductor laser (QDSL) model under the influence of optical injection from another laser. The proposed model was studied numerically with the help of MATLAB. A QDSL system with optical injection was proposed and studied numerically. The quantum dot (QD) laser was used, which is a quantum semiconductor laser and has strong stability without external perturbation. When it is subjected to feedback, it has a critical effect on the follower laser and changes its stable behavior before injection to a set of nonlinear dynamics. The effect of both optical feedback strength and the delay time on the performance and behavior of the bifurcation patterns in the follower laser output was studied, taking into account changing the bifurcation parameters, the injection force k, the slave laser frequency, and the slave laser delay time. The behavior of the slave was studied each time and compared with the behavior of the master. We observed the chaotic paths (essentially stable and continuous pulsating oscillations evolving into periodic and semi-periodic oscillations and then chaotic ones). The time series corresponding to the bifurcation diagrams and the probability of the time interval between spikes and attractors were studied.","PeriodicalId":509395,"journal":{"name":"Journal of Optical Communications","volume":"50 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically injected quantum dot lasers and its complex dynamics\",\"authors\":\"Tahani Adil Kareem, H. A. Al Husseini\",\"doi\":\"10.1515/joc-2024-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lasers are paradigmatic examples of nonlinear systems and have played a crucial role in developing nonlinear dynamics into an interdisciplinary topic. Indeed, a freely operating laser represents a nontrivial system, but the phenomena that occur are much more interesting when the laser is exposed to external factors such as optical feedback (OFB) and optical injection (OI). This paper deals with the analysis of the dynamic behavior of a quantum dot semiconductor laser (QDSL) model under the influence of optical injection from another laser. The proposed model was studied numerically with the help of MATLAB. A QDSL system with optical injection was proposed and studied numerically. The quantum dot (QD) laser was used, which is a quantum semiconductor laser and has strong stability without external perturbation. When it is subjected to feedback, it has a critical effect on the follower laser and changes its stable behavior before injection to a set of nonlinear dynamics. The effect of both optical feedback strength and the delay time on the performance and behavior of the bifurcation patterns in the follower laser output was studied, taking into account changing the bifurcation parameters, the injection force k, the slave laser frequency, and the slave laser delay time. The behavior of the slave was studied each time and compared with the behavior of the master. We observed the chaotic paths (essentially stable and continuous pulsating oscillations evolving into periodic and semi-periodic oscillations and then chaotic ones). The time series corresponding to the bifurcation diagrams and the probability of the time interval between spikes and attractors were studied.\",\"PeriodicalId\":509395,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":\"50 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激光是非线性系统的典范,在将非线性动力学发展成一个跨学科课题的过程中发挥了至关重要的作用。事实上,自由运行的激光器代表了一个非线性系统,但当激光器受到光反馈(OFB)和光注入(OI)等外部因素的影响时,发生的现象会更加有趣。本文分析了量子点半导体激光器(QDSL)模型在来自另一个激光器的光注入影响下的动态行为。在 MATLAB 的帮助下,对提出的模型进行了数值研究。提出并数值研究了带有光注入的量子点半导体激光器系统。所使用的量子点(QD)激光器是一种量子半导体激光器,在没有外部扰动的情况下具有很强的稳定性。当它受到反馈时,会对跟随激光器产生临界效应,并将其注入前的稳定行为改变为一组非线性动力学行为。通过改变分叉参数、注入力 k、从属激光器频率和从属激光器延迟时间,研究了光反馈强度和延迟时间对从属激光器输出分叉模式的性能和行为的影响。每次都对从属激光器的行为进行研究,并与主激光器的行为进行比较。我们观察到了混沌路径(基本稳定的连续脉冲振荡演变为周期和半周期振荡,然后是混沌振荡)。我们研究了分岔图对应的时间序列以及尖峰和吸引子之间的时间间隔概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optically injected quantum dot lasers and its complex dynamics
Lasers are paradigmatic examples of nonlinear systems and have played a crucial role in developing nonlinear dynamics into an interdisciplinary topic. Indeed, a freely operating laser represents a nontrivial system, but the phenomena that occur are much more interesting when the laser is exposed to external factors such as optical feedback (OFB) and optical injection (OI). This paper deals with the analysis of the dynamic behavior of a quantum dot semiconductor laser (QDSL) model under the influence of optical injection from another laser. The proposed model was studied numerically with the help of MATLAB. A QDSL system with optical injection was proposed and studied numerically. The quantum dot (QD) laser was used, which is a quantum semiconductor laser and has strong stability without external perturbation. When it is subjected to feedback, it has a critical effect on the follower laser and changes its stable behavior before injection to a set of nonlinear dynamics. The effect of both optical feedback strength and the delay time on the performance and behavior of the bifurcation patterns in the follower laser output was studied, taking into account changing the bifurcation parameters, the injection force k, the slave laser frequency, and the slave laser delay time. The behavior of the slave was studied each time and compared with the behavior of the master. We observed the chaotic paths (essentially stable and continuous pulsating oscillations evolving into periodic and semi-periodic oscillations and then chaotic ones). The time series corresponding to the bifurcation diagrams and the probability of the time interval between spikes and attractors were studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of lateral misalignment loss and total insertion loss with beam waist control in high contrast single mode coupling fibers Optimizing Fi-Wi network performance through advanced multiplexing techniques: a comparative analysis for enhanced quality metrics Simulation design for Ro-FSO communications system by digital modulation schemes Enabling ultra-high bit rate transmission with CFBG as dispersion compensator in an OptiSpan 240 km DWDM network Various graded index plastic optical fiber performance signature capability with the optimum dispersion control for indoor coverage applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1