Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez
{"title":"稻草和废蘑菇堆肥协同消化生产生物甲烷的环境和经济比较分析:零价纳米铁颗粒的应用","authors":"Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez","doi":"10.2478/ata-2024-0001","DOIUrl":null,"url":null,"abstract":"\n Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"37 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles\",\"authors\":\"Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez\",\"doi\":\"10.2478/ata-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"37 9\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ata-2024-0001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2024-0001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles
Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.