稻草和废蘑菇堆肥协同消化生产生物甲烷的环境和经济比较分析:零价纳米铁颗粒的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-24 DOI:10.2478/ata-2024-0001
Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez
{"title":"稻草和废蘑菇堆肥协同消化生产生物甲烷的环境和经济比较分析:零价纳米铁颗粒的应用","authors":"Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez","doi":"10.2478/ata-2024-0001","DOIUrl":null,"url":null,"abstract":"\n Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"37 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles\",\"authors\":\"Sina Ardabili, R. Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez\",\"doi\":\"10.2478/ata-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"37 9\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ata-2024-0001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2024-0001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

废蘑菇堆肥是生产沼气的主要潜力之一。近年来,一些研究采用了添加纳米颗粒和碱性预处理的方法来提高沼气产量。本研究是采用混合碱性预处理(0、5 和 15 毫克 NaOH)和零价铁纳米颗粒(0、10、20、30 和 40 毫克)来改善废蘑菇堆肥和稻草共消化的先驱研究之一。结果表明,与滞留时间(RT)和纳米颗粒(NP)浓度相比,滞留时间(RT)和纳米颗粒(NP)浓度对生物甲烷产量的影响最大(在 1%的概率水平上显著),而 NaOH 浓度对生物甲烷产量的影响最小(在 5%的概率水平上显著)。此外,NP40Na15 的生物甲烷产量最高(比对照组高出约 200%)。最低累积生物甲烷产量与 NP0Na15 有关(比对照组低约 30%)。相对环境中点影响最小的是 NP40Na15,平均比对照组低约 60%。在高浓度 NaOH 中添加 NP 可降低中点影响。这项研究的结果可以开发出新的生态友好型生物甲烷生产方法,更好地利用农业和有机废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles
Spent mushroom compost is one of the main potentials for biogas production. In recent years, several studies employed adding nanoparticles and alkaline pretreatment for improving biogas production. The present study is one of the pioneer studies that employ hybrid alkaline pretreatment (0, 5, and 15 mg of NaOH) and zero-valent iron nanoparticles (0, 10, 20, 30, and 40 mg) for improving the co-digestion of spent mushroom compost and rice straw. According to the results, retention time (RT) and nanoparticle (NP) concentrations have the most significant impact on biomethane production (significant at 1% probability level), while the NaOH concentration has the lowest impact on biomethane production (significant at 5% probability level) in comparison with RT and NP concentration. Also, the maximum biomethane production is related to NP40Na15 (about 200% higher than the control). The minimum cumulative biomethane production is related to NP0Na15 (about 30% lower than the control). The lowest relative environmental midpoint impact is related to NP40Na15, which was on average about 60% lower than the control. Adding NPs at high concentrations of NaOH reduces the midpoint impacts. The results of the study could lead to new, ecologically friendly biomethane production methods that make better use of agricultural and organic wastes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Diversity-Generating Skeletal Editing Transformations. Single-Electron-Transfer-Mediated Carbonylation Reactions. Strengthening Liquid Crystal Elastomer Muscles. Structural and Mechanistic Advances in the Chemistry of Methyl-Coenzyme M Reductase (MCR). Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1