功率为 300、400 和 500 MWth 的小型长寿命压水堆堆芯中 (Th-233U)O2、(Th-233U)C 和 (Th-233U)N 燃料的中子特性比较

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2024-02-23 DOI:10.2478/nuka-2024-0001
B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari
{"title":"功率为 300、400 和 500 MWth 的小型长寿命压水堆堆芯中 (Th-233U)O2、(Th-233U)C 和 (Th-233U)N 燃料的中子特性比较","authors":"B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari","doi":"10.2478/nuka-2024-0001","DOIUrl":null,"url":null,"abstract":"\n The neutronic characteristics of (Th-233U)O2, (Th-233U)C, and (Th-233U)N have been compared in small long-life pressurized water reactors (PWRs). Neutronic calculations were carried out at 300 MWth, 400 MWth, and 500 MWth with two cladding types: zircaloy-4 and ZIRLO (Zr low oxygen). They were performed using the Standard Reactor Analysis Code (SRAC) and JENDL-4.0 nuclide data, dividing the reactor core into three fuel zones with varying 233U enrichment levels, ranging from 3% to 9% and fluctuating by 1%, employing the PIJ module at the fuel cell level and the CITATION module at the reactor core level. In addition, 231Pa was added as burnable poison (BP). The (Th-233U)N fuel demonstrated superior criticality compared to the other fuel types, as it consistently achieves critical conditions throughout the reactor’s operating cycle with excess reactivity <1.00% dk/k for several fuel configurations at the 300 MWth and 400 MWth power levels. Moreover, the (Th-233U)N and (Th-233U)C fuels exhibited similar and flatter power density distribution patterns compared to the (Th-233U)O2 fuel. The power peaking factor (PPF) value was relatively higher for (Th-233U)O2 fuel than the other two fuels. The (Th-233U)N fuel exhibited the most negative Doppler coefficient, followed by (Th-233U)C and (Th-233U)O2 fuels. Analysis of burnup levels revealed that the (Th-233U)O2 fuel achieved significantly higher burnup than the other two fuels.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power\",\"authors\":\"B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari\",\"doi\":\"10.2478/nuka-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The neutronic characteristics of (Th-233U)O2, (Th-233U)C, and (Th-233U)N have been compared in small long-life pressurized water reactors (PWRs). Neutronic calculations were carried out at 300 MWth, 400 MWth, and 500 MWth with two cladding types: zircaloy-4 and ZIRLO (Zr low oxygen). They were performed using the Standard Reactor Analysis Code (SRAC) and JENDL-4.0 nuclide data, dividing the reactor core into three fuel zones with varying 233U enrichment levels, ranging from 3% to 9% and fluctuating by 1%, employing the PIJ module at the fuel cell level and the CITATION module at the reactor core level. In addition, 231Pa was added as burnable poison (BP). The (Th-233U)N fuel demonstrated superior criticality compared to the other fuel types, as it consistently achieves critical conditions throughout the reactor’s operating cycle with excess reactivity <1.00% dk/k for several fuel configurations at the 300 MWth and 400 MWth power levels. Moreover, the (Th-233U)N and (Th-233U)C fuels exhibited similar and flatter power density distribution patterns compared to the (Th-233U)O2 fuel. The power peaking factor (PPF) value was relatively higher for (Th-233U)O2 fuel than the other two fuels. The (Th-233U)N fuel exhibited the most negative Doppler coefficient, followed by (Th-233U)C and (Th-233U)O2 fuels. Analysis of burnup levels revealed that the (Th-233U)O2 fuel achieved significantly higher burnup than the other two fuels.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2024-0001\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2024-0001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在小型长寿命压水堆(PWR)中比较了(Th-233U)O2、(Th-233U)C和(Th-233U)N的中子特性。中子计算是在 300 MWth、400 MWth 和 500 MWth 条件下进行的,有两种包层类型:锆合金-4 和 ZIRLO(低氧锆)。研究使用了标准反应堆分析代码(SRAC)和 JENDL-4.0 核素数据,将反应堆堆芯分为三个燃料区,233U 的富集水平从 3% 到 9% 不等,波动幅度为 1%,在燃料电池层使用了 PIJ 模块,在反应堆堆芯层使用了 CITATION 模块。此外,还添加了 231Pa 作为可燃毒物 (BP)。与其他类型的燃料相比,(Th-233U)N燃料的临界状态更优越,因为在反应堆的整个运行周期中,它都能稳定地达到临界状态,在 300 MWth 和 400 MWth 功率水平下,几种燃料配置的过剩反应性均小于 1.00% dk/k。此外,与(Th-233U)O2燃料相比,(Th-233U)N和(Th-233U)C燃料表现出相似且更平缓的功率密度分布模式。(Th-233U)O2燃料的功率峰值因数(PPF)值相对高于其他两种燃料。(Th-233U)N燃料的负多普勒系数最大,其次是(Th-233U)C和(Th-233U)O2燃料。燃烧水平分析表明,(Th-233U)O2 燃料的燃烧水平明显高于其他两种燃料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power
The neutronic characteristics of (Th-233U)O2, (Th-233U)C, and (Th-233U)N have been compared in small long-life pressurized water reactors (PWRs). Neutronic calculations were carried out at 300 MWth, 400 MWth, and 500 MWth with two cladding types: zircaloy-4 and ZIRLO (Zr low oxygen). They were performed using the Standard Reactor Analysis Code (SRAC) and JENDL-4.0 nuclide data, dividing the reactor core into three fuel zones with varying 233U enrichment levels, ranging from 3% to 9% and fluctuating by 1%, employing the PIJ module at the fuel cell level and the CITATION module at the reactor core level. In addition, 231Pa was added as burnable poison (BP). The (Th-233U)N fuel demonstrated superior criticality compared to the other fuel types, as it consistently achieves critical conditions throughout the reactor’s operating cycle with excess reactivity <1.00% dk/k for several fuel configurations at the 300 MWth and 400 MWth power levels. Moreover, the (Th-233U)N and (Th-233U)C fuels exhibited similar and flatter power density distribution patterns compared to the (Th-233U)O2 fuel. The power peaking factor (PPF) value was relatively higher for (Th-233U)O2 fuel than the other two fuels. The (Th-233U)N fuel exhibited the most negative Doppler coefficient, followed by (Th-233U)C and (Th-233U)O2 fuels. Analysis of burnup levels revealed that the (Th-233U)O2 fuel achieved significantly higher burnup than the other two fuels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Gamma radiation shielding properties of (x)Bi2O3–(0.5 – x)ZnO–0.2B2O3–0.3SiO2 glass system No evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 nanoparticles in three mammalian cell lines despite the initial reduction of cellular mitochondrial activity Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power Professor W. Alexander Van Hook (1936-2023) Numerical studies of plasma edge in W7-X with 3D FINDIF code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1