玛多地震断裂带应力场异质性研究

Zhaoxuan Guan, Yongge Wan, Shaohua Huang, Gan Feng
{"title":"玛多地震断裂带应力场异质性研究","authors":"Zhaoxuan Guan, Yongge Wan, Shaohua Huang, Gan Feng","doi":"10.1785/0220230350","DOIUrl":null,"url":null,"abstract":"\n The 2021 Maduo earthquake sequence occurred on the Jiangcuo fault zone in Qinghai, China. However, the earthquake sequence did not occur along a straight fault. Aftershocks in the southeast section deflected the aftershocks in the southeast section to the east, when the aftershocks in the northwest section bifurcated. To investigate the relationship between these eastward deflections, aftershock bifurcations, and fault activity, 150 focal mechanism solutions of the Maduo earthquake sequence are collected and processed, and then the stress fields in the subregion and whole region are subsequently determined by partitioning the sliding window from southeast to northwest. The results show that the overall tectonic stress field of the Maduo earthquake sequence exhibits northeast–southwest compression and northwest–southeast extension due to the northward compression of the Indian plate, causing rupture of the Kunlunshankou-Jiangcuo fault, which straightened the curved Maduo-Gander fault. The stress field at the deflection of the southeastern section of the source area differs significantly from the overall stress field. The plunge angle of the extensional stress axis in the southeastern deflection area is close to vertical, which is speculated to be due to the effect of the crack tip and the adjustment of local stress after the earthquake. The extensional stress axis at the bifurcated distribution of aftershocks in the northwestern section of the source area is slightly greater than of the overall stress field, indicating that the activation of the bifurcated hidden fault was triggered by the high rupture intensity and the adjustment of local stress. The reactivation of the hidden bifurcated fault results in local stress and causes decreasing seismicity west of the bifurcation area.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"242 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Heterogeneity of the Stress Field in the Maduo Earthquake Fault Zone\",\"authors\":\"Zhaoxuan Guan, Yongge Wan, Shaohua Huang, Gan Feng\",\"doi\":\"10.1785/0220230350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The 2021 Maduo earthquake sequence occurred on the Jiangcuo fault zone in Qinghai, China. However, the earthquake sequence did not occur along a straight fault. Aftershocks in the southeast section deflected the aftershocks in the southeast section to the east, when the aftershocks in the northwest section bifurcated. To investigate the relationship between these eastward deflections, aftershock bifurcations, and fault activity, 150 focal mechanism solutions of the Maduo earthquake sequence are collected and processed, and then the stress fields in the subregion and whole region are subsequently determined by partitioning the sliding window from southeast to northwest. The results show that the overall tectonic stress field of the Maduo earthquake sequence exhibits northeast–southwest compression and northwest–southeast extension due to the northward compression of the Indian plate, causing rupture of the Kunlunshankou-Jiangcuo fault, which straightened the curved Maduo-Gander fault. The stress field at the deflection of the southeastern section of the source area differs significantly from the overall stress field. The plunge angle of the extensional stress axis in the southeastern deflection area is close to vertical, which is speculated to be due to the effect of the crack tip and the adjustment of local stress after the earthquake. The extensional stress axis at the bifurcated distribution of aftershocks in the northwestern section of the source area is slightly greater than of the overall stress field, indicating that the activation of the bifurcated hidden fault was triggered by the high rupture intensity and the adjustment of local stress. The reactivation of the hidden bifurcated fault results in local stress and causes decreasing seismicity west of the bifurcation area.\",\"PeriodicalId\":508466,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\"242 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2021 年玛多地震序列发生在中国青海江错断层带上。然而,地震序列并不是沿着一条直线断层发生的。东南断面的余震使东南断面的余震向东偏转,此时西北断面的余震分叉。为了研究这些向东偏转、余震分叉和断层活动之间的关系,收集并处理了玛多地震序列的 150 个焦点机制解,然后通过从东南到西北的滑动窗口分区确定了次区域和整个区域的应力场。结果表明,由于印度板块向北压缩,导致昆仑山口-江错断层断裂,使弯曲的玛多-甘德断层变直,玛多地震序列的整体构造应力场表现为东北-西南压缩和西北-东南延伸。源区东南段挠曲处的应力场与整体应力场有很大差异。东南挠曲区延伸应力轴的垂角接近垂直,推测是由于裂缝尖端的影响和震后局部应力的调整所致。震源区西北段余震分岔分布处的伸展应力轴略大于整体应力场,说明高破裂强度和局部应力调整引发了分岔隐伏断层的活化。隐藏的分叉断层的重新激活导致了局部应力,并引起分叉区以西的地震活动性下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Heterogeneity of the Stress Field in the Maduo Earthquake Fault Zone
The 2021 Maduo earthquake sequence occurred on the Jiangcuo fault zone in Qinghai, China. However, the earthquake sequence did not occur along a straight fault. Aftershocks in the southeast section deflected the aftershocks in the southeast section to the east, when the aftershocks in the northwest section bifurcated. To investigate the relationship between these eastward deflections, aftershock bifurcations, and fault activity, 150 focal mechanism solutions of the Maduo earthquake sequence are collected and processed, and then the stress fields in the subregion and whole region are subsequently determined by partitioning the sliding window from southeast to northwest. The results show that the overall tectonic stress field of the Maduo earthquake sequence exhibits northeast–southwest compression and northwest–southeast extension due to the northward compression of the Indian plate, causing rupture of the Kunlunshankou-Jiangcuo fault, which straightened the curved Maduo-Gander fault. The stress field at the deflection of the southeastern section of the source area differs significantly from the overall stress field. The plunge angle of the extensional stress axis in the southeastern deflection area is close to vertical, which is speculated to be due to the effect of the crack tip and the adjustment of local stress after the earthquake. The extensional stress axis at the bifurcated distribution of aftershocks in the northwestern section of the source area is slightly greater than of the overall stress field, indicating that the activation of the bifurcated hidden fault was triggered by the high rupture intensity and the adjustment of local stress. The reactivation of the hidden bifurcated fault results in local stress and causes decreasing seismicity west of the bifurcation area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador Constraining the Geometry of the Northwest Pacific Slab Using Deep Clustering of Slab Guided Waves An Empirically Constrained Forecasting Strategy for Induced Earthquake Magnitudes Using Extreme Value Theory A Software Tool for Hybrid Earthquake Forecasting in New Zealand DASPy: A Python Toolbox for DAS Seismology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1